Analysing the Performance and Costs of Reactive
Programming Libraries in Java

Julien Ponge
jponge@redhat.com
Red Hat
Lyon, France

Clément Escoflier
cescoffi@redhat.com
Red Hat
Valence, France

Abstract

Modern services running in cloud and edge environments
need to be resource-efficient to increase deployment density
and reduce operating costs. Asynchronous I/O combined
with asynchronous programming provides a solid techni-
cal foundation to reach these goals. Reactive programming
and reactive streams are gaining traction in the Java ecosys-
tem. However, reactive streams implementations tend to be
complex to work with and maintain. This paper discusses
the performance of the three major reactive streams com-
pliant libraries used in Java applications: RxJava, Project
Reactor, and SmallRye Mutiny. As we will show, advanced
optimization techniques such as operator fusion do not yield
better performance on realistic I/O-bound workloads, and
they significantly increase development and maintenance
costs.

CCS Concepts: « Software and its engineering;

Keywords: reactive programming, reactive streams, java,
benchmarking

ACM Reference Format:

Julien Ponge, Arthur Navarro, Clément Escoffier, and Frédéric Le
Mouél. 2021. Analysing the Performance and Costs of Reactive Pro-
gramming Libraries in Java. In Proceedings of the 8th ACM SIGPLAN
International Workshop on Reactive and Event-Based Languages and
Systems (REBLS °21), October 18, 2021, Chicago, IL, USA. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3486605.3486788

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
a national government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.

REBLS °21, October 18, 2021, Chicago, IL, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-9108-5/21/10...$15.00
https://doi.org/10.1145/3486605.3486788

51

Arthur Navarro
arnavarr@redhat.com
Red Hat
Villeurbanne, France

Frédéric Le Mouél
frederic.le-mouel@insa-lyon.fr
Univ Lyon, INSA Lyon, Inria, CITI, EA3720
Villeurbanne, France

1 Introduction

Modern applications are made by composing distributed
services that are developed in-house or taken from off-the-
shelve third-party vendors. Services are being increasingly
deployed and operated in Kubernetes clusters in cloud and
edge environments[4]. Micro-services recently became a pop-
ular architecture style where each service has a tight func-
tional scope, has data ownership and has its own release
life-cycle. Such services can be scaled up and down in a fine-
grained fashion to respond to fluctuating workloads. For
instance, a service may have 12 instances running at peak
time during the day and 0 at night when there is no traffic.
It is increasingly important to maximize deployment density
in such environments where costs are driven by resource
usage[21], hence deploy resource-efficient services[5].

One of the key ingredients for resource efficiency is to
move away from traditional software stacks where each net-
work connection is associated with a thread, and where I/O
operations are blocking[8]. By moving to asynchronous I/O,
one can multiplex multiple concurrent connection process-
ing on a limited number of threads[7, 13], but this requires
abandoning familiar imperative programming constructs.

There is a great interest in the Java ecosystem for em-
bracing asynchronous I/O and asynchronous programming,
with reactive streams[16] playing a pivotal role as a foun-
dation for higher-level programming models and middle-
ware[9, 17, 19, 20]. Still, reactive streams implementations
such as RxJava[19], Reactor[20] and Mutiny[17] are complex.
The maintenance of such libraries is expensive due to the
complexity of the reactive streams protocol. As reactive is
often associated with hopes for better performance, most
libraries introduced complex optimizations. By contrast, the
Mutiny library took a different approach by not including
any complex optimization, resulting in more straightforward,
easier to maintain code. A natural question arises: how does
Mutiny perform in comparison to the other optimized li-
braries?

This paper discusses the performance of the 3 major re-
active programming libraries used in Java software stacks:

https://doi.org/10.1145/3486605.3486788
https://doi.org/10.1145/3486605.3486788

REBLS ’21, October 18, 2021, Chicago, IL, USA

RxJava, Reactor and Mutiny. Experiments have been con-
ducted across a series of CPU-bound then I/O bound micro-
benchmarks to measure the performance impact of the reac-
tive pipelines built with these libraries. As we will see, clever
optimization techniques do not necessarily yield better per-
formance on realistic I/O-bound workloads, which is what
reactive streams were designed for. Still, these techniques
greatly increase development and maintenance costs.

2 Reactive Programming in Java

Java has long provided support for asynchronous types in-
spired by promises and futures[10]: Future, Completable-
Future and CompletionStage. These types encapsulate sin-
gle operations. The java.util.stream package deals with func-
tional stream processing of in-memory collections, not re-
sources with asynchronous I/O. This lead to the reactive
streams initiative that later influenced Java to adopt the pro-
posed interfaces as part of the standard library, albeit with a
still nascent adoption.

2.1 Reactive Streams

Reactive streams is a specification and a protocol for asyn-
chronous data stream processing. It defines a non-blocking
back-pressure protocol guaranteeing that a producer through-
put respects the consumer processing capacity[16].

Reactive streams are the lingua franca for an open and
vendor-neutral asynchronous programming ecosystem in
Java. For instance, both an event streaming service and a
large data store can expose reactive streams compliant clients.
Applications can then connect these APIs and build reactive
applications enforcing end-to-end back-pressure. Of course,
this requires that clients and the application code honor the
reactive streams protocol and semantic.

1234,5. filter(odd) f(n) =n*10 20, 40, 60, ..
Publisher Processor Processor Subscriber

N

request(30) Subscription

Figure 1. A sample reactive streams pipeline.

Reactive streams define an API and a protocol, captured in
implementations as a library and a technology compatibility
kit (TCK). The API defines 4 components, whose interactions
are illustrated by a sample pipeline in Figure 1.

1. A publisher produces a potentially infinite sequence
of items.

2. A subscriber requests a subscription from a publisher,
then receives zero or more items. The subscriber can
also be notified of a terminal error, and it can also

52

Julien Ponge, Arthur Navarro, Clément Escoffier and Frédéric Le Mouél

receive a completion signal that marks the end of the
stream.

3. A subscription is passed to a subscriber as a way to
signal the publisher. A cancellation can be requested,
after which the publisher eventually stops sending
items. A subscription is also used to request a positive
number of items, and the publisher should not send
more than the requested amount. Unbounded requests
are possible by requesting (2% — 1) items.

4. A processor is both a publisher and a subscriber, used
as an intermediary operator. For example, a processor
can transform and filter values, recover from errors,
etc.

Publishers, subscribers and processors have to pass the re-
active streams TCK. The reactive streams API is included
in Java 9 and beyond in the java.util.concurrent.Flow
interfaces, and ships as an independent set of interfaces
in the org.reactivestreams library with Java 6 compati-
bility.

Reactive streams is a low-level protocol, and applications
should use higher-level reactive programming libraries. Many
compliant libraries exist, such as SmallRye Mutiny, RxJava,
or Project Reactor. In addition to the reactive streams API
and protocol, they offer a rich set of operators (e.g., transform
values, chain operations, manage failures, combine streams,
etc.), publisher, and subscriber implementations.

The reactive streams APIs are simple, but the protocol is
complex with a broad set of rules regarding signals ordering,
serialized concurrent emissions, subscription retention, can-
cellation, and more. The TCK offers to validate publishers,
subscribers and processors against the rules of the reactive
streams protocol. Writing correct implementations can be
surprisingly difficult despite the apparent simplicity of the
APIs.

2.2 Libraries

We focus our comparison on three reactive programming
libraries for Java: RxJava, Reactor, and Mutiny.

2.2.1 RxJava. RxJava has historically been the first popu-
lar library to offer reactive extensions in Java. It is popular
in the Android ecosystem, especially to respond to user in-
puts and network requests in graphical user interfaces. The
popularity of RxJava in the Android space is fading as An-
droid has now switched focus to the Kotlin programming
language and (Kotlin) internal domain-specific languages for
writing reactive code. RxJava usage can be found in other
areas for graphical user interfaces or backend development
to compose asynchronous I/O operations (e.g., the Vert.x
toolkit[7]).

Here is an example with a stream (type Flowable) where
even numbers are selected, then transformed to a Record
object, then recorded into a database using an asynchronous
record method:

Analysing the Performance and Costs of Reactive Programming Libraries in Java

flowable.filter(n -> n % 2 == 0)
.map (Recoxd: :new)
.flatMap(s -> recoxd(db, s));

RxJava 1 did not support back-pressure and reactive streams,
which were an addition of RxJava 2 and now version 3. Rx-
Java brings the concepts from reactive extensions[11] and
borrows functional programming terminology to name its
operators (e.g., map, flatMap, zip, etc).

RxJava tries to optimize performance by using several
techniques.

1. The reactive streams semantics and protocol are not
always being respected but “relaxed” for interactions
between publishers, processors and subscribers origi-
nating from the RxJava library’.

2. Operators can be fused to reduce the number of ac-
tual operators that items traverse as they go through
RxJava pipelines. The actual fusion depends on the
pipeline and operators semantics: in some cases, they
can be actually merged as one; in other cases, internal
data structures such as queues can be shared, or thread
synchronization can be removed.

3. Some operators attempt to pre-fetch data from their
upstream publisher, even if their subscriber hasn’t re-
quested as much or any item yet. In theory this may
reduce the number of signals on frequent small batches
requests as an operator can cache a larger amount of
pre-fetched data, but the actual gain has to be mea-
sured against concrete workloads.

2.2.2 Reactor. Reactor is a popular library whose promi-
nent usage is in the Spring Framework community. Its history
is closely related to that of RxJava 2 when it adopted the reac-
tive streams specification in the form of the Flowable type.
The codebases share lots of internal code, with the external
APIs differing. RxJava 2 continued the API approach of ver-
sion 1 and kept Java 6 compatibility to address the Android
development market. Reactor focused on Java 8, especially
with the support of lambdas, and offers an API reduced to
2 types: Mono for single-valued operations, and Flux for
reactive streams. Reactor exhibits an API with functional
programming terminology and idioms, just like RxJava, al-
though it offers a few shortcuts and helper operators with
more meaningful names (e.g., the then operator).

In fact the previous stream processing example based on
RxJava is identical when converted to Reactor:

0)

flux.filter(n -> n % 2
.map(Recoxd: :new)
.flatMap(s -> record(db, s));

The internal design of Reactor borrows code and tech-
niques found in RxJava, although the code bases have since

ISee http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/
Flowable.html.

53

REBLS ’21, October 18, 2021, Chicago, IL, USA

diverged due to a more sustained development pace of Reac-
tor project. Reactor hence also uses the operator fusing and
pre-fetching optimizations from RxJava.

2.2.3 Mutiny. Mutiny is a more recent addition to the re-
active Java ecosystem?®. Mutiny is prominent in the Quarkus
framework and Vert.x toolkit communities.

Two leading principles have guided the design of the
Mutiny APIs.

1. Bring meaningful operator names for processing asyn-
chronous events rather than borrow from the func-
tional programming terminology.

2. Ensure API navigability by offering groups (e.g., on-
Item(), onFailure()) to limit the number of pro-
posed methods when using an IDE completion, and
show only the relevant methods for a given context
(e.g., responding to a failure, responding to an item,
etc).

Users of both RxJava and Reactor are overwhelmed by
more than a hundred methods when they need an operator.
In contrast, Mutiny users see about ten methods each time
they need an operator. It is worth noting that this design
will sometimes lead to more verbosity. This level of verbosity
combined with modern tools (IDE completion typically) is
a design choice aiming at improving readability and navi-
gability. The previous example where even numbers from a
stream are being selected, transformed into a Record object
then saved to a database could be written as follows with
Mutiny:

multi.select().where(n -> n % 2 == 0)
.onItem().transform(Recoxrd: :new)
.onItem()

.transformToUniAndMerge(s -> record(s, db));

The internals of Mutiny are strictly adhering to the reac-
tive streams specification. Mutiny does not try to perform
operator fusing, and, as we will see in experiments, this does
not harm performance when processing I/O bound work-
loads (which is what reactive streams are for). It also dramati-
cally simplifies the code base, as operator fusing strategies in
RxJava and Reactor require complex protocols for operators
to be merged and for internal state and synchronization shar-
ing. Mutiny does not perform pre-fetching either. While it is
possible to pass the reactive streams TCK and do pre-fetching
as RxJava / Reactor do, this requires internal buffering. Pre-
fetching also requires an internal, library-specific operator
negotiation mechanism that increases the code complexity.

2.3 Source Code Metrics

Table 1 shows code metrics for RxJava, Reactor and Mutiny.
The metrics have been obtained using the scc tool® and only

Disclaimer: some of the paper authors work on this project.
3See https://github.com/boyter/scc.

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html
http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html
https://github.com/boyter/scc

REBLS ’21, October 18, 2021, Chicago, IL, USA

Julien Ponge, Arthur Navarro, Clément Escoffier and Frédéric Le Mouél

Table 1. Code metrics of the reactive programming libraries using scc (excluding tests and documentation).
Library | Java lines of code (LOC) | Number of files | Cyclomatic complexity | Cyclomatic complexity
(CC) density (CC/KLOC)[3]
RxJava 3.0.13 | 100313 907 11750 117.13
Reactor 3.4.8 | 72858 444 13358 183.34
Mutiny 1.0.0 | 21177 300 2840 134.10

take the core implementations source code into account, not
documentation snippets, tests and complementary modules.

We can see that Mutiny is a more straightforward code
base than that of both RxJava and Reactor. Reactor and Rx-
Java have comparable cyclomatic complexities, although the
Reactor codebase is more condensed with about half the
number of files and about 72% the number of effective lines
of Java code compared to RxJava. The operator fusing and
pre-fetching optimization techniques play a role in explain-
ing the higher complexity of RxJava and Reactor compared
to that of Mutiny. Codebases tend to grow bigger and more
complex as features are added and bugs are discovered and
fixed. Mutiny is a newer project, we must hence assume that
its low complexity is in part due to that factor.

The code base of RxJava is the biggest, which can be ex-
plained by supporting a broader palette of reactive types:
Completable, Maybe, Single, Observable and Flowable.
By contrast Reactor and Mutiny expose just 2 reactive types
each: Mono / Flux for Reactor and Uni / Multi for Mutiny.

RxJava and Mutiny present better maintenance productiv-
ity, whereas Reactor — with a higher cyclomatic complexity
density — is more difficult to maintain either in lines of
code and in complexity[3]. Mutiny is still 21% the number of
lines of code of RxJava, making it a more approachable code
base.

3 Benchmarking Reactive Programming
Libraries

We compare the performance of Mutiny, Reactor and Rx-
Java in both CPU and I/O bound settings. The benchmarks
code can be found in the Git repository at https://github.
com/jponge/rebls21-paper-benchmarks for review and repro-
ducibility purposes. The library versions used in the bench-
marks are that of Table 1.

3.1 Experimental Approach

The benchmarks are written using JMH?, a sub-project of
OpenJDK dedicated to helping writing better micro-bench-
marks[6]. The Java virtual machine is an adaptive runtime
that is especially efficient at optimizing code based on spec-
ulation heuristics and runtime profiles[12], so it is very easy
to write incorrect benchmarks where dead-code elimination,
constant folding or loop unrolling do not measure what the

4See https://openjdk.java.net/projects/code-tools/jmh/

54

benchmarks developer intended. JMH provides a harness
API to write benchmarks and executes them with various
techniques in generated code to defeat common JIT optimiza-
tions. We ran benchmarks multiple times because different
runs may not trigger the same optimizations, and we tuned
the warmup rounds so that the JIT compiler had time to reach
a stable state. Using JMH alone does not provide off-the-shelf
correctness in benchmarks, but it considerably helps to limit
the likeliness of such mistakes being made when benchmarks
developers are aware of them[6].

The servers used for benchmarking have Intel Xeon CPUs
at 3.50GHz, 16 cores and 252GB of RAM. The operating sys-
tem is using a Linux kernel 4.4.0. The Java virtual machine
is an AdoptOpenJDK? distribution version 11.0.11+9, tuned
to use the Shenandoah garbage collector®, 1 GB of heap size
and 256MB of stack size. We use Shenandoah for its short
GC pauses allowing for better latency and more predictable

GC.

—O-O-0-0-0-0-0+
@ Items

Library-neutral publisher
(random numbers, text lines, ...)

JMH blackhole

8/@

Benchmark subscriber

Pipelines under test

Figure 2. Benchmarking reactive libraries with library-
neutral publishers and subscribers.

As we want to measure the performance of Mutiny, Reac-
tor and RxJava, we need to ensure that the variance in bench-
marks is reduced to stream processing code in pipelines that
solely exercise code from these libraries. To do so, we de-
veloped publishers and a subscriber that pass the reactive
streams TCK, but that are free from any code from these
libraries, as illustrated in Figure 2. This ensures that all li-
braries are exercised with the same event sources and event
consumers. It also prevents any library from doing end-to-
end optimizations from its own publishers, such as opera-
tor fusing and pre-fetching, which are only possible using
internal APIs that are outside of the scope of the reactive
streams specification. The subscriber sends events to JMH

5See https://adoptium.net from the Eclipse Foundation.
%See https://wiki.openjdk.java.net/display/shenandoah/Main.

https://github.com/jponge/rebls21-paper-benchmarks
https://github.com/jponge/rebls21-paper-benchmarks
https://openjdk.java.net/projects/code-tools/jmh/
https://adoptium.net
https://wiki.openjdk.java.net/display/shenandoah/Main

Analysing the Performance and Costs of Reactive Programming Libraries in Java

Blackhole, a helper class for consuming values and pre-
venting (but not limited to) constant folding and dead-code
elimination as they are the most common mistakes.

There is neither an established benchmark for reactive
programming libraries in Java, nor a benchmark for reac-
tive streams implementations. We have developed a bench-
mark suite split into 3 families: individual operations (CPU
bound), multiple-operator pipelines (CPU bound), and I/O
bound pipelines. The benchmarks first compare the perfor-
mance of individual operations commonly used in reactive
pipelines: transforming a value with a function, chaining
with another asynchronous operation and selecting values.
We then run benchmarks where pipelines perform several op-
erations between the initial publisher and the subscriber. In
either individual operations or pipelines, the initial publisher
generates random numbers. These are CPU-bound bench-
marks, and since reactive streams have been designed for
asynchronous I/O, we also compare all libraries on represen-
tative I/O-bound workloads: composing network requests
and processing text lines from a file.

3.2 Single Operation Pipelines

All libraries offer reactive types for modeling single oper-
ations: Mono in Reactor, Single, Maybe, Completable in
RxJava and Uni in Mutiny. These types are useful for repre-
senting and composing one-shot operations such as sending
an event to a message queue or doing a database insert. They
directly compare to CompletionStage in Java, which is a
form of future / promise[10].

3.2.1 Individual Operators. Here we compare the per-
formance of transforming an event value (map) and chaining
with another operation (chain) on the Uni (Mutiny), Single
(RxJava) and Mono (Reactor) types. The benchmark can be
found in the UniIndividualOperators class of the source
code repository. We use Java CompletionStage (through
the CompletableFuture concrete class) as a baseline. As
said earlier, it also performs an asynchronous one-shot op-
eration while avoiding the overhead of the reactive streams
protocols. The throughput results are in Figure 3.
CompletableFuture provides the best throughput by near-

ly a factor of 2 for both types of operations, which is not sur-
prising since it does not have the overhead of a subscription-
based protocol. Here RxJava performs the best, followed by
Mutiny and Reactor, which is about 2 times slower than
Mutiny on the map operation.

3.2.2 Multiple Operators. To better appreciate the perfor-
mance of the reactive libraries, we need to measure what hap-
pens on a pipeline with multiple operators. The benchmark
can be found in the SingleOperationDirectTransforma-
tion class of the source code repository.

We start with a random number from a publisher, then
convert it to an absolute value using Math: :abs, then con-
vert it to a hexadecimal string using Long: : toHexString.

REBLS ’21, October 18, 2021, Chicago, IL, USA

Uni individual operators

&

Benchmark

i i i i i i
0 10000 20000 30000 40000 50000 60000
ops/ms (more is better)

Figure 3. Single operation and individual operators perfor-
mance.

We then chain the result with an operation to enclose the
string in brackets. The Mutiny version of the pipeline is as
follows:

Uni.createFrom().item(() ->
ThreadLocalRandom.current().nextLong())
.onItem().transform(Math: :abs)
.onItem().transform(Long: :toHexString)
.onItem().transformToUni(s ->
Uni.createFrom().item("[" + s + "1"));

We again use CompletionStage as a baseline, but we also
perform the processing in plain imperative code using di-
rect calls to Math: :abs and Long: : toHexString as another
baseline. The results are in Figure 4.

Single direct transformations

Benchmark

7 0 5000 10000 15000 20000 25000 30000
R ops/ms (more is better)

Figure 4. Single operation and multiple operators perfor-
mance.

REBLS ’21, October 18, 2021, Chicago, IL, USA

With more operations, the subscription-time overhead is
less apparent against CompletionStage. The relative per-
formance of the 3 reactive libraries is in line with the results
on individual operators: Reactor is the slowest, RxJava is the
fastest, and Mutiny sits in-between them. The plain imper-
ative baseline also serves as a reminder that boxing values
and transforming them in a monadic fashion is not free.

3.3 Event Stream Pipelines

Back-pressured stream pipelines can be constructed with
Mutiny Multi, Reactor Flux and RxJava Flowable. They
model streams of asynchronous events where back-pressure
is managed through the reactive streams request protocol.
An example would be receiving events from a message queue.
All types define some form of overflow management strat-
egy when items are being received, but there is no outstand-
ing subscriber demand. For instance, items can be buffered,
dropped, or an overflow can be a failure that terminates a
subscription.

3.3.1 Individual Operators. We compare the performance
of transforming values (map), selecting values based on a
predicate (filter), chaining with a single-valued operation
(mapToOne), and chaining with a stream-returning operation
(mapToMany). The benchmark can be found in the Multi-
IndividualOperators class of the source code repository.
The results are in Figure 5.

Multi individual operators

Benchmark

i i i
150 200 250

100
ops/s (more is better)

Figure 5. Event stream and individual operators perfor-
mance.

There is no baseline in this benchmark to focus on just
the relative performance of the libraries. The transforma-
tion and selection operators (map and filter) do not show
any significant performance difference across the 3 reactive
programming libraries.

Mutiny has a slower operation chaining performance com-
pared to RxJava and Reactor for both single-valued and

56

Julien Ponge, Arthur Navarro, Clément Escoffier and Frédéric Le Mouél

stream cases (mapToOne and mapToMany). We correlated this
performance issue to a bottleneck in the Mutiny subscription
mechanism because these operations require subscribing to
nested Uni and Multi objects. This will likely be revisited
and addressed in a future release of Mutiny.

Figure 5 does not show a mapToOne result for RxJava be-
cause the library has a bug with the flatMapSingle oper-
ator that causes a memory exhaustion when running the
benchmarks. This is a significant problem as it is very fre-
quent for applications to perform an asynchronous operation
for each item in a stream (e.g., doing a database insert). The
exact cause for that problem has yet to be identified, reported
and fixed. We also see that the “relaxed” reactive streams
protocol handling of RxJava does not result in significant
performance benefits compared to Reactor.

3.3.2 Multiple Operators. We now compare the reactive
libraries on pipelines with multiple operations. The bench-
mark can be found in the StreamDirectTransformation
class of the source code repository.

Pipelines start with a random number publisher, followed
by a transformation to an absolute value with Math: :abs)
then an odd value selection. Then for each item, we produce
a stream of strings with the hexadecimal string representa-
tion of the numbers (Long: : toHexString), followed with
1,2 and 3 "!" characters. Hence a stream (1, 2, 3, 12) would
produce (2,21, 2!, 2!, ¢, ¢!, ¢!, c!!!). The Reactor version of
the pipeline is as follows:

Flux.from(new RandomNumberPublisher())
.map(Math: :abs)
filter(n -> n % 2 == Q)
.concatMap(n -> {

String s = Long.toHexString(n);
return Flux.just(s, s + "!”, s + "11",
s + "Ly,

)

Note that we use stream concatenation semantics with
concatMap to preserve ordering, which would not be the
case with a flatMap.

We use 2 baselines: one with Java collection streams and
the equivalent imperative code done in a plain imperative
loop. The results are in Figure 6.

The imperative baseline is unsurprisingly the fastest, fol-
lowed by Java streams that do not need a back-pressure sig-
nalling and subscription mechanism, and do not have to deal
with potential multi-threaded access in that benchmark. Rx-
Java and Reactor have the same performance, while Mutiny
is around 13% slower. This can be explained by the impact of
operator fusion in RxJava and Reactor as well as the inner
streams subscription performance highlighted in the previ-
ous individual operations benchmark. Stream processing of
in-memory data is CPU-bound, and as such Java streams
are a better choice over any reactive streams based library
when a declarative pipeline model is a good fit. Last but not

Analysing the Performance and Costs of Reactive Programming Libraries in Java

Stream direct transformations

Benchmark

' ' ' ' '
100 125 150 175 200

&° 0 25 50 75
ops/s (more is better)

Figure 6. Event stream and multiple operators performance.

least good old imperative programming should always be
considered as it has evidently the best performance.

3.4 1/0 Bound Pipelines

The reactive streams specification was motivated by the need
for programming against asynchronous I/O streams. In this
section, we look at the performance of Mutiny, RxJava and
Reactor with I/O bound pipelines. The first scenario per-
forms I/O on the file system, while the second one performs
network requests.

3.4.1 File Processing. The source publisher in this exam-
ple reads text lines from an electronic transcript of the 19
century book Les Misérables by Victor Hugo (the file weights
3.2M). The benchmark can be found in the TextProcessing
class of the source code repository.

The first operator after the publisher discards blank lines.
The next one computes the number of characters in the line.
We then chain with a filesystem operation that appends
the characters count to a file, and to make it asynchronous
that operation is dispatched to a worker thread pool. The
last operator transforms the characters count to a string
and prefixes it with an arrow. We hence have 3 simple in-
memory operations (selecting and transforming values) and
2 I/O operations (reading and writing). The Mutiny version
of the pipeline is as follows:
Multi.createFrom().safePublisher(

new TextFilelLinePublisher(source))

.select() .where(line -> !line.isBlank())

.onItem().transform(String: :length)

.onItem().transformToUniAndConcatenate(count ->

Uni.createFrom()
.completionStage (appendToSink(count)))

.onItem().transform(count -> "=> " + count);

We compared Reactor, RxJava and Mutiny against a base-
line of the equivalent imperative code. Figure 7 shows the

57

REBLS ’21, October 18, 2021, Chicago, IL, USA

results, with Figure 7a showing a box plot of the samples data,
and Figure 7b showing a histogram of the processing times
distribution. Neither representation shows any statistical
benefit of using one reactive library or the other. The imper-
ative code baseline is faster, but when it comes to reactive
programming libraries they all exhibit the same performance
figures.

3.4.2 Network Requests Processing. The previous bench-
mark exhibited filesystem I/O, while the next one focuses
on network requests. The benchmark can be found in the
NetworkRequests class of the source code repository.

In this benchmark, the source publisher issues 6 concur-
rent HTTP requests to fetch the content of the Les Misérables
book, which is exposed by an HTTP server. The HTTP server
is running on a separate server so that the HTTP requests ac-
tually go through a network, and not the loopback network
interface.

Once all responses have been triggered and collected, they
become a stream of 6 HTTP responses. Then, for each item,
the HTTP response body (the book text) is extracted, and
the final operation computes the total number of charac-
ters. The baseline uses CompletableFuture objects to per-
form 6 HTTP requests, then does the same processing as in
the reactive pipelines of Mutiny, RxJava and Reactor. All
pipelines delegate the HTTP request to a Completable-
Future-returning method called performHttpRequest, and
that uses the JDK HTTP client from Java 11 and beyond.

The Mutiny variant of the pipeline is built as follows:

Uni.join().all(
Uni.createFrom().completionStage(
this: :performHttpRequest),
// (...) times 6
) .andFailFast()
.onItem().transformToMulti(list ->
Multi.createFrom().iterable(list))
.onItem().transform(HttpResponse: :body)
.onItem().transform(String::length);

This benchmark interestingly exposes expressiveness dif-
ferences between the 3 reactive libraries. Reactor looses para-
metric types in the pipeline chain, forcing the usage of cast
operators between steps:

.flatMapMany (tup -> Flux.fromIterable(tup.tolList()))
.cast (HttpResponse.class)

.map (HttpResponse: :body)

.cast(String.class)

.map(String::length);

RxJava can produce reactive type objects from a Java
CompletionStage, but unlike Mutiny and Reactor not from
a Supplier<CompletionStage>. The nuance is subtle as
RxJava effectively caches the HTTP request rather than trig-
gering a new one for each new subscription. To reproduce the
correct behavior and trigger requests every time a pipeline
subscription happens, we need to use the defer operator:

REBLS ’21, October 18, 2021, Chicago, IL, USA

Text processing - 1000 samples

§ §

375~

@GO O

350 -

amD O

325-

300 -

275 -

ms/op (less is better)

250 -
225 - !

1
RxJava

© Gy
DD

o

1 1 1
Reactor Mutiny Baseline

(a) Box plot

Julien Ponge, Arthur Navarro, Clément Escoffier and Frédéric Le Mouél

Text processing - 1000 samples

| EIl Bl RxJava

I Reactor

N
o
o

N
o
S o

L B ' ' — i

- | s Mutiny

B Baseline

N
o
S o

o

200~

Frequency Frequency Frequency Frequency

o

[1 1
225 250 275 300 325 350 375

ms/op (less is better) - 100 bins

(b) Histograms

Figure 7. File processing performance.

Flowable.zip(
Flowable.defer(() -> Flowable
.fromCompletionStage (performHttpRequest())),
// (...) times 6

Another interesting issue that was found during the devel-
opment of this benchmark is the consistency of the HTTP
server response times. The initial iteration used the Python
embedded HT TP server, but it ended up not responding after
serving the file under load, and response times remained
fluctuant. The next iteration used a simple Node.js HTTP
server, but the latency was too inconsistent due to the adap-
tive nature of the V8 runtime, both in terms of just-in-time
compilation and garbage collection. We instead obtained
solid and consistent HTTP response times by running an
HTTP server written in Go as it features a non-adaptive
runtime.

Figure 8 shows the results. We again used a box plot (Fig-
ure 8a) and histogram (Figure 8b) to visualize the data.

Just like in the previous I/O-bound benchmark, there is
again no statistical advantage in choosing one reactive li-
brary or the other. The performance is very comparable,
despite RxJava and Reactor sharing operator fusion and pre-
fetching techniques that Mutiny does not have. Relaxing the
reactive streams protocol semantics between RxJava opera-
tors does not result in any observable benefit either.

4 Related Work

The reactive streams specification emerged due to the need
for coordinating publishers and subscribers of asynchronous,
back-pressure enabled data streams[16]. It was heavily influ-
enced by the experience of the Akka actor framework[15]
and the RxJava reactive programming library[19] that later

58

adopted a back-pressured reactive type called Flowable. Re-
actor[20] appeared as a heavily RxJava-inspired reactive pro-
gramming library, sharing the design of internals, the func-
tional programming operators terminology, yet restricting
itself to just 2 reactive types and embracing modern Java
constructs at the time (e.g., lambdas and method references).
The early designs of Mutiny emerged in 2019, motivated by
the need to offer a better developer experience when com-
posing asynchronous operations over reactive types[17], and
backed by a fast real-world adoption in projects Quarkus
and Vert.x[7, 18]. The reactive streams interfaces have been
ported to the Java standard library as part of the F1ow nested
interfaces in Java 9 and beyond, but so far, adoption has
remained limited in favor of the original reactive streams
library.

All RxJava, Reactor and Mutiny are descendants of the
reactive extensions of Erik Meijer[11] that inspired elements
of C#, although it should be noted that reactive extensions
were never envisioned for back-pressured streams. Reactive
extensions build on ideas from promises and futures that
focused on the composition of asynchronous RPC opera-
tions[10]. RxJava is itself part of a family of ports of the
reactive extensions idioms to other languages such as RxJs
for JavaScript[1].

Since not everything is a stream, RxJava, Reactor and
Mutiny all expose a reactive type for single asynchronous
operations that are a form of future. These 3 reactive program-
ming libraries for Java are thus a mix of reactive extensions
and promise / futures as a programming model, and the reac-
tive streams protocol as an interaction model. Moreover, the
reactive streams specification does not mandate any specific
programming model. For instance Akka actors can cooperate
with Mutiny pipelines over reactive streams.

Analysing the Performance and Costs of Reactive Programming Libraries in Java

Network requests - 1000 samples

o o
240 -
(0]
8 8
230 - o] 8
5 E g !
2 220 -
o)
R
8 210 -
Koy
Q
9 200-
w
I 1
190 -
180 -
1 1 1 1
RxJava Reactor Mutiny Baseline

(a) Box plot

REBLS ’21, October 18, 2021, Chicago, IL, USA

Network requests - 1000 samples

I RxJava

I Reactor

0

200 - I
0 S
180 190 200 210 220
ms/op (less is better) - 100 bins

B Mutiny

Bmm Baseline

Frequency Frequency Frequency Frequency

1 i
230 240

(b) Histograms

Figure 8. Network requests processing performance.

The Reactive Manifesto focuses on the design of reactive
systems[5], that is, systems that remain responsive as work-
loads increase and/or as failures arise[7, 9, 13]. Reactive sys-
tems are based on asynchronous message passing for elastic-
ity and resilience purposes, hence reactive streams are key to
their design and implementation. Reactive systems, reactive
streams and reactive programming are different facets of the
modern distributed framework stacks as applications need to
face scalability[8] and resiliency challenges[2, 7, 13, 18, 22].

We designed our own benchmark suite because there
doesn’t exist any for either reactive programming libraries
in Java or reactive streams implementations. The wide di-
versity and discrepancy of operator combinations across the
libraries make the creation of a standard benchmark suite
difficult. We do not claim that the benchmark suite that we
designed is perfect: we selected a set of representative op-
erators based on our experience of reactive programming
usage in the field.

The Renaissance benchmark suite addresses parallel appli-
cations[14], and it contains a benchmark called rx-scrabble
that uses an old version of RxJava 1 and file system opera-
tions. The scope of this benchmark suite is too distant for
being useful in the context of this paper, and the file process-
ing benchmark above already performs a fair comparison of
the performance of RxJava, Reactor and Mutiny in presence
of I/O operations.

5 Conclusion

This paper compared the performance of 3 reactive program-
ming libraries for Java that comply with the reactive streams
specification: RxJava, Reactor and Mutiny. To that purpose,
we developed a suite of custom micro-benchmarks.

59

We first measured the performance of single operations
and stream reactive types in purely CPU-bound micro-bench-
marks. We benchmarked commonly used individual oper-
ators: transforming values, selecting values, chaining with
individual and stream-producing operations. We also bench-
marked pipelines with multiple operators, as this is more
representative of how reactive libraries are being used in
applications.

RxJava performs the best for single operation reactive
types, but it does not try to replicate the reactive streams
protocol as Mutiny and Reactor do. We found a bug caus-
ing out-of-memory exhaustion with RxJava flatMapSingle
operator. Reactor ended up slowest in benchmarks, with
Mutiny being half-way to the performance of RxJava on
multiple operators pipelines. Single operation reactive types
are important as they model frequently-used asynchronous
operations such as database insert queries or acknowledging
messages. In fact, a typical HTTP-exposing micro-service
uses single asynchronous operations more often than it has
to deal with streams.

Both Reactor and RxJava have similar performance on
stream operations, and outperform Mutiny as soon as chain-
ing re-subscription is involved (e.g., transformToUni). In
the multiple operations reactive pipeline benchmark, Mutiny
ended up 13% slower than RxJava and Reactor. Individual
operation benchmarks show that the performance of Mutiny
is comparable to that of the other libraries for direct data
transformation and selection. RxJava and Reactor share lots
of history and operators internals. Their performance in
CPU-bound cases can be explained by operator fusing and
pre-fetching techniques, but at the cost of more complex
code bases, as Table 1 shows. We could not assess if the “re-
laxation” of the reactive streams protocol between RxJava

REBLS ’21, October 18, 2021, Chicago, IL, USA

operators had any significant effect, and we found a case
where memory exhaustion was possible.

Reactive libraries based on reactive streams should not be
used for the sole purpose of processing in-memory data such
as Java collections. When dealing with collections, the Java
streams API offers the ability to build data transformation,
selection and aggregation pipelines, including processing
parallelization. Reactive libraries inevitably pay the cost of
the reactive streams protocol (e.g., demand signalling, multi-
threading and serialization requirements) that was primarily
designed for asynchronous I/O. Java CompletionStage is
an efficient framework-neutral type to model asynchronous
operations, but it is not subscription-based like with the
reactive libraries types so pipeline constructions cannot be
cached.

The I/0 bound cases depict a more realistic picture of
the impact of RxJava, Reactor and Mutiny when used to
process what reactive streams were made for. We ran two
benchmarks: one that performs operations on the filesystem,
and one that performs network requests. In both benchmarks,
there is no statistical evidence that either of the libraries
performs any better. We could not exhibit any evidence that
the operator fusing and pre-fetching techniques employed
by RxJava and Reactor could have any favorable impact
in realistic workloads where non-trivial I/O operations are
involved. Such optimizations seem to have a minor effect in
CPU-bound workloads, but, again, there are already better
alternatives in the Java standard library.

The engineering costs associated with developing opti-
mization techniques such as operator fusing and pre-fetching
is questionable in light of code metrics such as the lines to
be maintained and the cyclomatic complexity estimates of
Table 1. The simpler code base of Mutiny is within range of
the performance of RxJava and Mutiny in CPU-bound cases,
and it performs just as well in realistic I/O bound workloads.

There is potential for exploring alternative library imple-
mentation and operation techniques, and possibly improve
performance. Still, would the development costs be any jus-
tified, especially given the results on I/O bound workloads
compared to the non-reactive baselines?

Acknowledgments

This work is partially supported by Red Hat Research. The
authors would like to thank Georgios Andrianakis, Rodney
Russ and Stéphane Epardaud for their constructive feedback.

References

[1] Manuel Alabor and Markus Stolze. 2020. Debugging of RxJS-based
applications. In Proceedings of the 7th ACM SIGPLAN International
Workshop on Reactive and Event-Based Languages and Systems. ACM,
Virtual USA, 15-24. https://doi.org/10.1145/3427763.3428313

60

Julien Ponge, Arthur Navarro, Clément Escoffier and Frédéric Le Mouél

[2] Sadek Drobi. 2012. Play2: A New Era of Web Application Development.
IEEE Internet Computing 16, 4 (July 2012), 89-94. https://doi.org/10.
1109/MIC.2012.84

GXK. Gill and C.F. Kemerer. 1991. Cyclomatic complexity density and

software maintenance productivity. IEEE Transactions on Software En-

gineering 17, 12 (1991), 1284-1288. https://doi.org/10.1109/32.106988

Brian Hayes. 2008. Cloud computing. Commun. ACM 51, 7 (July 2008),

9-11. https://doi.org/10.1145/1364782.1364786

[5] Jonas Bonér, Dave Farley, Roland Kuhn, Martin Thompson. 2014. The
Reactive Manifesto. https://www.reactivemanifesto.org/

[6] Julien Ponge. 2014. Avoiding Benchmarking Pitfalls on the JVM. Or-

acle Java Magazine (Aug. 2014). https://www.oracle.com/technical-

resources/articles/java/architect-benchmarking.html

Julien Ponge. 2020. Vert.x in Action: Asynchronous and Reactive Java.

Manning Publications.

[8] Dan Kegel. 1999. The C10K problem. http://www.kegel.com/c10k.html

[9] Roland Kuhn, Brian Hanafee, and Jamie Allen. 2017. Reactive design

patterns. Manning Publications.

Barbara Liskov and Liuba Shrira. 1988. Promises: Linguistic Support

for Efficient Asynchronous Procedure Calls in Distributed Systems.

ACM SIGPLAN Notices (1988), 8.

Erik Meijer. 2012. Your mouse is a database. Commun. ACM 55, 5 (May

2012), 66-73. https://doi.org/10.1145/2160718.2160735

Michael Paleczny, Christopher Vick, and Cliff Click. 2001. The Java

Hotspot Server Compiler. In Proceedings of the 2001 Symposium on

JavaTM Virtual Machine Research and Technology Symposium - Volume

1(JVM’01). USENIX Association, USA.

[13] Julien Ponge and Mark Little. 2019. Scalability and Resilience in Prac-

tice: Current Trends and Opportunities. In 2019 38th Symposium on

Reliable Distributed Systems (SRDS). IEEE, Lyon, France, 267-2670.

https://doi.org/10.1109/SRDS47363.2019.00037

Aleksandar Prokopec, Andrea Rosa, David Leopoldseder, Gilles Du-

boscq, Petr Tima, Martin Studener, Lubomir Bulej, Yudi Zheng, Alex

Villazén, Doug Simon, Thomas Wiirthinger, and Walter Binder. 2019.

Renaissance: benchmarking suite for parallel applications on the JVM.

In Proceedings of the 40th ACM SIGPLAN Conference on Programming

Language Design and Implementation. ACM, Phoenix AZ USA, 31-47.

https://doi.org/10.1145/3314221.3314637

[15] Raymond Roestenburg, Rob Bakker, and Rob Williams. 2016. Akka in
Action. Manning Publications.

[16] Reactive Streams Special Interest Group. 2014. Reactive streams
specification. https://github.com/reactive-streams/reactive-streams-
jvm/blob/v1.0.3/README.md#specification

[17] Red Hat and contributors. 2021. Mutiny. https://smallrye.io/smallrye-
mutiny/

[18] Red Hat and contributors. 2021. Quarkus. https://quarkus.io/

[19] RxJava contributors. 2021. RxJava. https://github.com/ReactiveX/
RxJava

[20] VMWare and contributors. 2021.

projectreactor.io/

Bill Williams. 2012. The Economics of Cloud Computing: An Overview

For Decision Makers [Book]. Cisco Press. https://www.oreilly.com/

library/view/the-economics-0f/9780132904186/

Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jovanovic, Paul

Wogerer, Peter B. Kessler, Oleg Pliss, and Thomas Wiirthinger. 2019.

Initialize once, start fast: application initialization at build time. Pro-

ceedings of the ACM on Programming Languages 3, OOPSLA (Oct. 2019),

1-29. https://doi.org/10.1145/3360610

[t}

E

(4]

(7]

[10]

[11]
[12]

[14]

Project Reactor. https://

[21]

[22]

https://doi.org/10.1145/3427763.3428313
https://doi.org/10.1109/MIC.2012.84
https://doi.org/10.1109/MIC.2012.84
https://doi.org/10.1109/32.106988
https://doi.org/10.1145/1364782.1364786
https://www.reactivemanifesto.org/
https://www.oracle.com/technical-resources/articles/java/architect-benchmarking.html
https://www.oracle.com/technical-resources/articles/java/architect-benchmarking.html
http://www.kegel.com/c10k.html
https://doi.org/10.1145/2160718.2160735
https://doi.org/10.1109/SRDS47363.2019.00037
https://doi.org/10.1145/3314221.3314637
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.3/README.md#specification
https://github.com/reactive-streams/reactive-streams-jvm/blob/v1.0.3/README.md#specification
https://smallrye.io/smallrye-mutiny/
https://smallrye.io/smallrye-mutiny/
https://quarkus.io/
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
https://projectreactor.io/
https://projectreactor.io/
https://www.oreilly.com/library/view/the-economics-of/9780132904186/
https://www.oreilly.com/library/view/the-economics-of/9780132904186/
https://doi.org/10.1145/3360610

	Abstract
	1 Introduction
	2 Reactive Programming in Java
	2.1 Reactive Streams
	2.2 Libraries
	2.3 Source Code Metrics

	3 Benchmarking Reactive Programming Libraries
	3.1 Experimental Approach
	3.2 Single Operation Pipelines
	3.3 Event Stream Pipelines
	3.4 I/O Bound Pipelines

	4 Related Work
	5 Conclusion
	Acknowledgments
	References

