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Abstract

Web services are increasingly gaining acceptance as a framework for facilitating
application-to-application interactions within and across enterprises. It is commonly
accepted that a service description should include not only the interface, but also the
business protocol supported by the service. The present work focuses on the formal-
ization of an important category of protocols that include time-related constraints
(called timed protocols), and the impact of time on compatibility and replaceability
analysis. We formalized the following timing constraints: C-Invoke constraints de-
fine time windows within which a service operation can be invoked while M-Invoke
constraints define expirations deadlines. We extended techniques for compatibility
and replaceability analysis between timed protocols by using a semantic-preserving
mapping between timed protocols and timed automata, leading to the identification
of a novel class of timed automata, called protocol timed automata (PTA). Specif-
ically, PTA exhibit a particular kind of silent transitions that strictly increase the
expressiveness of the model, yet they are closed under complementation, making ev-
ery type of compatibility or replaceability analysis decidable. Finally, we implemented
our approach in the context of a larger project called ServiceMosaic, a model-driven
framework for web service life-cycle management.

1 Introduction

Service descriptions are specifications of the syntactic or semantic properties of a service
that are made available to potential clients for the purpose of (i) assisting developers in
creating clients that can correctly use and interact with a service, and (ii) enabling the se-
lection, either at design time or at runtime, of services that match the clients’ needs. Today,
service descriptions typically include the interface definition, the transport-level properties
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(both can be specified in WSDL), and may also include business protocol definitions, that
is, the specification of the possible message exchange sequences (conversations) that are
supported by the service [11]. Protocols can be specified using BPEL [43]) or any of the
many other languages developed for this purpose (e.g., [11, 17]).

Providing service descriptions is not in itself sufficient to facilitate development and
binding. In addition to descriptions, we need methods and software tools for analyzing
service descriptions to (i) identify if interaction between a client and a service is possible;
(ii) if it is, identify which conversations can be carried out between two services, to help
developers to check if these include all and only the desired ones; (iii) if it is not, understand
mismatches between protocols and, if possible, create adapters to allow interactions to
occur. We generally refer to this kind of analysis as compatibility/replaceability analysis
[38, 11].

The need for formal methods and software tools for such type of analysis is widely
recognized, and many approaches have been developed to this end, including some by the
authors. In [11, 10, 12], we presented an approach and a model for business protocols
as well as a framework for compatibility analysis. This paper focuses on the important
category of protocols that include time-related constraints (called timed protocols in the
following). Time is a crucial abstraction that has been studied in several works in research
fields such as workflow systems [49, 29, 20] and even web services [18, 36, 30]. There are
countless examples of behaviors that involve timing issues in any kind of protocol [11],
from business protocol for web services (e.g., see the RosettaNet PIPs [48]), to interac-
tions between traditional web-based services and users (see E-Commerce web sites such
as Travelocity or Amazon), to lower level protocols such as TCP. Time-related behaviors
range from session timeouts to “logical” deadlines with different kinds of behaviors (e.g.,
seats reserved on a flight needs to be paid within n hours otherwise they are released).
Existing approaches in the field of service-oriented computing mainly consider time for
performing traditional model checking (e.g., detecting deadlocks).

Given the importance of considering time-related properties, we present concepts and
techniques, supported by a tool, for performing compatibility and replaceability analysis
between timed protocols. Furthermore, we show how the analysis and the tool can be
leveraged to perform the same analysis between BPEL processes or between a BPEL pro-
cess and a protocol. The availability of such concepts and tools is quite useful in that it
allows to assess compatibility and replaceability in both top-down and bottom-up devel-
opment approaches. In top-down scenarios a client is designed starting from its external
interface and protocol, and we are faced with the problem of binding it with a (compatible)
service. In bottom-up approaches the development starts from the composition of services
(e.g., the BPEL process), and quite often no protocol description is made available as part
of the documentation (and if it is made available, we have no guarantee that it correctly
describes the message exchanges actually supported by the process). In this case, we are
then faced with the problem of verifying if a selected partner service is compatible with
our composition, either by looking at the partner’s defined protocol, if available, or by
looking at the partner’s process (again, if available). If none of the above is available
then compatibility analysis can only be based on the WSDL interface description and it is
necessary limited). Compatibility analysis between processes (composite services) is very
useful in integration scenarios within an enterprise where process (e.g., BPEL) specifica-
tions are often available. Solving the above problem and supporting these protocol-based
analysis scenarios require tackling a number of challenges that we address in this paper.
More precisely, the main contributions of this paper are:

• The first step consists in defining a protocol model. We did so in our previous
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work, and we briefly summarize the results in this paper to make it self-contained.
In particular, an informal model for timed protocols has been presented in [9], with
a first approach being formalized in [8] as a subset of the model that we present in
this paper. Here, we revisit and extend concepts and techniques defined earlier
for basic protocols to make them applicable to timed protocols. As it is often the
case in such tasks, when designing our extended model we were facing a trade-off
between expressiveness and complexity / readability of the model. While in general
new abstractions may provide benefits, they may also make the model too complex,
thereby rendering it unusable for practitioners. To find a reasonable balance between
expressiveness and complexity, we conducted an analysis of real world e-commerce
portals to identify the service abstractions that are useful and commonly needed in
many practical situations [13].

• The next step addressed in this paper lies in the extension of the protocol operators
(e.g., intersection, difference), needed to handle the compatibility and replace-
ability analysis, to the context of timed protocols and the investigation of their
computational properties. Indeed, the introduction of time aspects adds significant
complexity to the problem. Many formal models enabling explicit representation
of time exist (e.g., timed automata, timed petri-nets), all showing extreme difficulties
to handle algorithmic analysis of timed models [4, 34]. For example, timed au-
tomata, which are today one the most used modeling formalism to deal with timing
constraints, suffer from undecidability of many problems such as language inclusion
and complementation that are fundamental to system analysis and verification tasks.
Such problems have been shown to be sensitive to several criteria (e.g., density of
the time axis, type of constraints, presence of silent transitions, etc). In this paper
we show that the set of protocol manipulation and comparison operators that are
essential for realizing protocol analysis are decidable. We show this by establishing
a reversible, semantic-preserving mapping to timed automata [2] that, inci-
dentally, identifies a new class that we called protocol timed automata. This class
exhibits silent or ε-transitions with clock resets, making it strictly more expressive
than general timed automata for which there is no closure under the complemen-
tation operator, and hence the language inclusion problem is not decidable. These
properties turn out to be the key for realizing the protocol operators. Protocol
timed automata are a novel class of timed automata which is closed under com-
plementation and for which the language inclusion problem is decidable, despite the
presence of ε-transitions with clock resets.

• We tackle the problem of examining compatibility between processes (and
specifically BPEL processes with time-related constructs such as alerts and dura-
tions). This is very important as protocol definitions are not always available (even
for the services we develop), while BPEL specifications are. Furthermore, BPEL is
widely used also as a protocol language and therefore addressing BPEL significantly
increases the practical applicability and impact of the research presented here. To
this end, we build on top of the protocol analysis operators by devising a mechanism
to extract timed protocol specifications from BPEL code and by then using the op-
erators to analyze (in)compatibility between BPEL processes and the services they
are supposed to interact with.

• All the features described here have been implemented in a tool as part of a larger
project called ServiceMosaic [14] which aims at developing a model-driven framework
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for web service life-cycle management. In addition to process and protocol analysis
as discussed here, ServiceMosaic also includes facilities for designing protocols and
for discovering protocol models from service execution logs [41]. A demonstration
featuring the ServiceMosaic tools has been presented in [39].

Preliminary versions of this work that consider restricted forms of timed protocols
have been already published in conference papers [9, 8, 45]. More precisely, [9, 8] deals
with a timed protocol model without C-Invoke constraints and which includes M-Invoke
constraints that only refer to the last transition while [45] considers timed protocol model
in which explicit transitions cannot be fired after the expiration of the implicit transitions.
This paper extends our previous work in the following directions: (i) it considers a more
general timed protocol model without restrictions on the usage of the C-Invoke and
M-Invoke constraints. As a consequence, a more in-depth technical analysis is required
in order to set up an adequate mapping to timed automata and to prove the closure
properties of the operators, (ii) it extends the protocol analysis approach in order to be
able to compare BPEL processes or a BPEL process and a protocol and illustrates on a
typical usage scenario how the proposed approach works.

The remainder of this paper is organized as follows. Section 2 motivates the need for
time-related constraints and introduces both informally and formally the timed protocol
model used in this paper. Section 3 extends to the context of timed protocols the approach
of protocol compatibility and replaceability analysis as well as the protocol manipulation
and comparison operators introduced in [11]. Sections 4 and 5 contain the main technical
contribution of this work. Section 4 describes a semantic-preserving mapping between
timed protocols and timed automata and leverages it to prove the main computational
properties of the considered timed protocol operators for which we give algorithms in
section 5. Section 6 presents our prototype platform and illustrates it on a typical us-
age scenario related to service development. In particular, this section describes how the
presented protocol analysis approach can be applied on BPEL processes. Section 7 dis-
cusses some limitations of the proposed approach as well as related work. We conclude in
Section 8.

2 Timed protocol modeling

This section starts by motivating the need of time-related constraints using three examples
related to web services and business processes where timing constraints play a critical
role: an application, an application integration standard and a web service composition
language. Then, it describes the timed protocols model both formally and informally.

• E-Commerce portals. The sales condition notice of many E-Commerce portals provide
temporal constraints. Let us consider a classic example of a plane ticket seller portal.
A potential purchaser is usually allowed to put a seat on hold for a day or two before a
confirmation and payment. In case the buyer does not confirm the purchase after the
delay, or if it does not cancel the reservation, the seller will implicitly release the seat
holding and cancel the purchase process. There are other examples in the field of E-
Commerce. For example goods selling portals are usually entitled by law regulations
to allow a buyer to return a purchase within a short delay such as one week after
the delivery. Also, they are often constrained to respect delays when dealing with
customers for operations such as the deliveries or the refunding of returned purchases.

• RosettaNet PIPs. RosettaNet [48] is an industrial consortium which aims at facil-
itating the transactions among the supply chains of trading partners. It consists
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of many specifications called the Partner Interface Processes (PIPs) that represent
the processes involved in those transactions. The PIPs have been applied to the
production systems of companies such as Intel. The PIPs can be potentially im-
plemented using service-oriented architectures. The PIPs exhibit time-dependent
behaviors. For example the PIP 3A4 specifies how a seller and a buyer can process
a purchase order. More specifically, it specifies the following timing constraints: (i)
the PurchaseOrderRequestAction and the PurchaseOrderConfirmationAction must be
acknowledged within 2 hours, and (ii) the reply to the PurchaseOrderRequestAction
must be sent within 24 hours.

• BPEL processes. The Business Process Execution Language [43] is the major specifi-
cation in the field of long-running web services orchestrations. BPEL provides several
time-related constructions such as the wait activity which causes a given process to
“sleep” for a given amount of time or until a date has been reached. The other ac-
tivity is the use of pick containers for which timers can be defined, for example to
trigger a timeout handler if a message has not been received after a given delay, or
when a given date has been reached.

2.1 Overview of the model

Start Logged

Vehicle
Selection

PreApproval
Application

Payment
Estimation

Credit
Approved

Credit
ApplicationCancelled

Credit
Expired

Application
Rejected

Credit
Accepted

T 1: login 
T 2: budgetPlanner

T 3: leaseOrBuyTest T 4: accountManagement 

T 6: selectVehicleT 5: preApproval

T 7 : reject − T 8: approved −

T 9: selectVehicle

T 10: 
M−InvokeT 8=30d

T 15: 
M−InvokeT 13=30dT 11: cancel 

T 12: modifySelection 

T 13: estimatePayment 

T 18: reapplication 

T 14: fullCredit 
C−InvokeT 1324h 

T 17: reject −

T 16: accept −

S

S

initial state

final state

Legend

Figure 1: A timed protocol of an online financing service.

We propose an extension of the business protocol model [11, 12] which is built upon
the traditional state-machine formalism. Indeed, state-based models have been commonly
used to model the behavior of systems, due to the fact that they are simple and intuitive.
In the model, states represent the different phases that a service may go through during
its interaction with a requester. A transition label is a message supported by the service.
It has a polarity which is positive (+) if the message is incoming, or negative (−) if it is
outgoing. Transitions are triggered when their associated messages are sent or received.
Hence, a state identifies a set of outgoing transitions, and therefore a set of possible
messages that can be either sent or received when the conversation with a requester is in
this state. For example, the protocol depicted on Figure 1 (inspired by the Ford Credit
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web portal) is initially in the Start state, and requesters begin a conversation by sending
a login message, moving to the Logged state.

In the figure, the initial state is indicated by an unlabeled entering arrow while final
states are double-circled. A conversation is accepted when ending in such a final state.
Hence, a sequence of messages login(+) · preApproval(+) · reject(−) is a conversation
supported by the protocol, while selectV ehicle(+) · login(+) is not: no transition for
a selectV ehicle message is available from the Start state, the two messages cannot be
ordered this way, and the conversation does not end in a final state. Business protocols
must be deterministic, as the requesters always needs to be able to determine in which
state the service is, otherwise much of the purpose of the protocol specification would be
lost. We consider the following two extensions to the base protocol model:

1. C-Invoke constraints specify time windows within which a transition can be fired. Out-
side of those time windows, the transition is disabled, and exchanging the associated
message results in an error.

2. M-Invoke constraints specify when a transition is automatically fired.
The obtained model is called timed (business) protocol model. C-Invoke constraints

can be attached to explicit transitions for which a message is exchanged between the service
provider and its requesters. The absence of C-Invoke constraint on an explicit transition
means that it can be fired from its source state at any time. By contrast, M-Invoke con-
straints are associated to implicit transitions. They model state changes in conversations
once a delay has elapsed (a typical example being a timeout). Implicit transitions are
analogous to the silent transitions in the automata theory [35] and we associate the empty
word ε as the label of those transitions. However, and unlike usual silent transitions,
implicit transitions are mandatorily fired whenever their associated M-Invoke constraints
are evaluated to true.

Continuing with the example protocol depicted on Figure 1, it is indicated that a
full credit application is accepted only if it is received at most 24 hours after a payment
estimation has been made. This behavior is specified by tagging the transition T14 :
fullCredit(+) with a time constraint C-Invoke(T13 ≤ 24h), i.e., T14 can only be fired
within a time window [0h, 24h] after T13 has been fired. T10 has a constraint M-Invoke(T8 =
30d), meaning that once a pre-approval application has been approved (T8), a requester is
given 30 days to select a vehicle (T9). If it does not continue the conversation by sending a
selectV ehicle message within the next 30 days, then the service provider will automatically
fire T10 and move to the CreditExpired state, ending the conversation. Finally, it should
be noted that the presence of an implicit transition from a given state affects the time
constraints of the explicit transitions outgoing from the same state. Indeed, T10 implies
that T9 can only be fired within a time window matching the 30 days. Hence, a constraint
C-Invoke(T8 < 30d) is implicitly associated with T9 because of the M-Invoke constraint
of T10.

2.2 Formal model

2.2.1 Syntax

Before giving the definition of timed protocols, we need to formalize the C-Invoke and
M-Invoke constraints. Let X be a set of variables referring to transition identifiers: if r is
a transition then Tr ∈ X is the variable referring to this transition. We consider the two
kinds of time constraints defined over a set of variables X using the following grammars:
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• C-Invoke(c) with c defined as follows:

c ::= x op k | x− x′ op k | c ∧ c | c ∨ c

with op ∈ {=, 6=, <,>,≤,≥}, x ∈ X , x′ ∈ X and k ∈ Q ∪ {⊥}, where Q denotes the
set of positive rational numbers,

• M-Invoke(c) with c defined as follows:

c ::= (x = k) ∧ c′ | c ∧ c | c ∨ c

with x ∈ X , k ∈ Q ∪ {⊥} and c′ being defined like in the grammar of C-Invoke
constraints.

The following is the definition for timed business protocols, extending the business
protocols model [11, 12].

Definition 2.1. A timed business protocol is a tuple P = (S, s0,F , M,X , C,R) where:
• S is a finite set of states, with s0 ∈ S being the initial state.
• F ⊆ S is the set of final states. If F = ∅, then P is said to be an empty protocol.
• M = Me ∪ {ε} is a finite set of messages Me augmented with the empty message ε. For

each message m ∈ Me, we define a function Polarity(P,m) which will be positive (+)
if m is an input message in P, and negative (−) if m is an output message in P.
• We assume that each transition r ∈ R is identified by a unique identifier id(r). X =
{Ti | ∃r ∈ R, Ti = id(r)} is a set of clock variables defined over the set of transitions
R.
• C is a set of time constraints defined over a set of variables X . The absence of a

constraint is interpreted as a constraint which always evaluates to true.
• R ⊆ S2 × M × C is a finite set of transitions. Each transition (s, s′,m, c) identifies

a source state s, a target state s′, a message m and a constraint c. We say that the
message m is enabled from a state s. When m = ε, c must be a M-Invoke constraint,
otherwise c must be either a C-Invoke constraint or true.

In the sequel, we use the notation R(s, s′,m, c) to denote the fact that (s, s′,m, c) ∈ R.
To enforce determinism, we require that a protocol has only one initial state, and that for
every state s and every two transitions (s, s1,m1, c1) and (s, s2,m2, c2) enabled from s, we
have either m1 6= m2 or c1 ∧ c2 ≡ false.

2.2.2 Semantics

Before defining the timed protocol semantics, we introduce first the notion of variable
valuation.

Variable interpretation We consider as a time domain the set of positive reals R≥0

augmented with a special element ⊥ to denote the fact that a transition has never been
taken yet. Let X be a set of variables valued in R≥0. A variable valuation V : X →
R≥0 ∪ {⊥} is a mapping that assigns to each variable x ∈ X a time value V(x).

We note by Vt(x) the valuation of x at an instant t. In the beginning (i.e., at instant
t0 = 0) we assume that all of the variables are set to ⊥, i.e., Vt0(Ti) =⊥, ∀Ti ∈ X .

Then, a variable valuation at a time tj is completely determined by a protocol execu-
tion. Consider for example an execution σ = s0 · (m0, t0) · s1 . . . sn−1.(mn−1, tn−1) · sn of a
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protocol P. The valuation of a clock variable Ti at time tj , with 0 < j ≤ n, is defined as
follows:

Vtj (Ti) =
{
Vtj−1(Ti) + (tj − tj−1)
0 if Ti = id(R(sj , sj+1,m, c)) is fired from sj to sj+1

It should be noted that for any r ∈ R≥0, k ∈ Q and any comparison operator op ∈ {<,≤
,=, 6=, >,≥}: 

⊥ + r = ⊥
⊥ − r = ⊥
⊥ op k = false
⊥ op ⊥ = true if op ∈ {=,≤,≥}
⊥ op ⊥ = false otherwise

Given a variable valuation V and a constraint C-Invoke(c) (respectively, M-Invoke(c)),
we denote by c(V) the constraint obtained by substituting each variable x in c by its value
V(x). A variable valuation V satisfies a constraint C-Invoke(c) (respectively, M-Invoke(c))
if and only if c(V) ≡ true. In this case, we write V |= C-Invoke(c) (respectively, V |=
M-Invoke(c))

Timed conversations Timed conversations are inspired from the notion of timed words
in timed automata as defined in [2].

Let P = (S, s0,F , M,X , C,R) be a timed protocol. A correct execution (or simply, an
execution) of P is a sequence σ = s0 · (m0, t0) · s1 . . . sn−1 · (mn−1, tn−1) · sn such that:

1. t0 ≤ t1 ≤ . . . ≤ tn (i.e., the occurrence of times increase monotonically). As usual, we
also assume non-Zenoness [2] of the sequences of time (i.e., we cannot have infinite
sequences in finite time),

2. s0 is the initial state and sn is a final state of P, and
3. ∀j ∈ [1, n], we have: R(sj−1, sj ,mj−1, cj−1) and Vj−1 |= cj−1.

As an example, the sequence σ′ = Start · (login(+), 0) ·Logged · (preApproval(+), 1) ·
PreApprovalApplication · (approved(−), 3) ·CreditApproved · (ε, 33) ·CreditExpired is a
correct execution of the financing service protocol depicted on Figure 1.

If σ = s0 · (m0, t0) · s1 . . . sn−1 · (mn−1, tn−1) · sn is a correct execution of P, then the
sequence tr(σ) = (m0, t0) . . . (mn−1, tn−1) forms a timed trace which is compliant with P.
Continuing with the example, the execution σ′ of the above service protocol leads to the
timed trace tr(σ′) = (login(+), 0) · (preApproval(+), 1) · (approved(−), 3) · (ε, 33).

During an execution σ of a protocol P, the externally observable behavior of P, here-
after called timed conversation of P and noted conv(σ), is obtained by removing from
the corresponding timed trace tr(σ) all of the non observable events (i.e., all of the
pairs (mi, ti) with mi = ε). For example, during the previous execution σ′, the ob-
servable behavior of the financing service is described by the timed conversation obs(σ′) =
(login(+), 0) · (preApproval(+), 1) · (approved(−), 3).

In the following, given a protocol P, we denote by Traces(P) the set of the timed
traces which are compliant with P and with Tr(P) the set of timed conversations of P.

Timed interactions Timed conversations describe the externally observable behavior
of timed protocols and, as we will show below, are essential to analyze the ability of two
services to interact correctly. Consider for example the protocol P depicted on Figure 1
and its reversed protocol P ′ obtained by reversing the polarity of the messages (i.e., input
messages become outputs and vice-versa).
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We can observe that when P ′ interacts with P by following a given timed conver-
sation, P follows exactly a conversation with the reversed polarities of the messages.
For example, if during such an interaction the timed conversation of P is (login(+), 0) ·
(selectV ehicle(+), 1) · (estimatePayment(+), 10) · (fullCredit(+), 30) · (accept(−), 100),
then the timed conversation of P ′ is (login(−), 0) · (selectV ehicle(−), 1) · (estimate-
Payment(−), 10) · (fullCredit(−), 30) · (accept(+), 100).

In this case, we call the path (login, 0) · (selectV ehicle, 1) · (estimatePayment, 10) ·
(fullCredit, 30) · (accept, 100) a timed interaction trace of P and P ′. The polarities of the
messages that appear in interaction traces are not defined. Indeed, each input message m
of one protocol matches an output message m of the other protocol.

More precisely, let P and P ′ be two timed protocols and let τ = (a0, t0) · (. . .) · (an, tn)
be a sequence of events in which the polarities of the messages are undefined. Then τ is a
timed interaction trace of P and P ′ if and only if there exist two timed conversations σ1

and σ2 such that:
1. σ1 ∈ Tr(P) and σ2 ∈ Tr(P ′), and
2. σ1 is the reverse conversation of σ2 (i.e., the conversation obtained from σ2 by inverting

the polarities of the messages), and
3. τ = Unp(σ1) = Unp(σ2) where Unp(σ) denotes the trace obtained from σ by removing

the polarities of the messages.

3 Protocol analysis concepts

Our approach for protocol compatibility and replaceability analysis is based on a set
of protocol manipulation and comparison operators that were introduced in [11]. The
proposed operators are build on existing relations and operators defined in the context of
timed automata (e.g., language inclusion, intersection, complementation, etc). We briefly
recall hereafter both the type of analysis that we target and the operators that we use to
do it. We describe the implementation of our operators using already-known constructs
on timed automata in Section 5.

3.1 Protocol analysis

Compatibility analysis is concerned with verifying whether two services can converse. It is
necessary for both static and dynamic binding, and it also aids in managing evolution as it
helps verify that a modified client can still interact with a certain service. More precisely,
we identified two compatibility classes. Partial compatibility between two protocols P1

and P2 implies that at least one conversation can be carried out between two services
implementing these protocols. A protocol P1 is fully compatible with P2 if P2 can support
all message exchanges that P1 can generate (the inverse is not required to be true). Ideally,
if we have developed a service S characterized by protocol P , at binding time we will want
to look for services that have a protocol with which P is fully compatible, so that every
message exchange that our service can generate is understood by our partner.

Replaceability analysis identifies whether a service can act as a substitute of another
one, either in general or when interacting with certain requesters. Such an analysis in-
volves finding the set of conversations that both services can support even if they are not
equivalent. This is useful to determine whether a new version of a service (protocol) can
support the same conversations as the previous one or whether a newly defined service can
support the conversations that a given standard specification mandates. As in the case
of compatibility, we identified several replaceability classes. Protocol equivalence occurs
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when two protocols support exactly the same conversations. Protocol subsumption occurs
when a protocol supports at least all of the conversations of another one. Finally,

Protocol replaceability w.r.t. a client protocol occurs when a protocol P1 can replace a
protocol P2 when interacting with a client protocol Pc if every valid conversation between
P2 and Pc is also a valid conversation between P1 and Pc. This latter definition is helpful
in managing evolution, as when we update our service we may want to check that it can
still communicate with the same clients it was interacting before.

We now recall the operators that fully characterize the compatibility and replaceability
classes mentioned above and give examples of their usage.

3.2 Protocol operators

Operands of the algebra are protocols and operators are special operations defined on pro-
tocols that enable, for example, to determine intersection and difference among protocols
or to identify which conversations can and cannot be supported when a service is used in
place of another one.

Operator name Symbol Semantics

Compatible Composi-
tion

‖TC P = P1 ‖TC P2 is a protocol P such that T ∈
Tr(P) iff T is an interaction trace of P1 and P2

Intersection ‖TI P = P1 ‖TI P2 is a protocol P such that Tr(P) =
Tr(P1) ∩ Tr(P2)

Difference ‖TD P = P1 ‖TD P2 is a protocol P that satisfies the
following condition: Tr(P) = Tr(P1) \ Tr(P2)

Projection
ˆ
‖TC

˜
Let P = P1 ‖TC P2.

ˆ
P1 ‖TC P2

˜
Pi

, with i ∈
{1, 2}, is the protocol obtained from P1 ‖TC P2

by defining the polarity function of the mes-
sages as follows: Polarity(

ˆ
P1 ‖TC P2

˜
Pi

, m) =

Polarity(Pi, m), ∀m ∈ M

Table 1: Protocol manipulation operators semantics.

We informally describe the protocol manipulation operators below, while their formal
semantics are presented in Table 1.
• Parallel composition, denoted as ‖TC, takes two input timed protocols and returns a

timed interaction protocol that captures the possible interactions between them. A
timed interaction protocol has simply no messages polarities. More precisely, the
resulting timed interaction protocol describes the set of timed interaction traces of
the input protocols.

• Projection, used to project the polarity of one protocol on the parallel composition of
two protocols, is denoted as

[
P1 ‖TC P2

]
P1

.
• Intersection, denoted as ‖TI, takes two input timed protocols and returns one timed

protocol that captures the timed conversations that they have in common.
• Difference, denoted as ‖TD, takes two input timed protocols and returns one that

captures the timed conversations that are supported by the first input protocol but
not by the second one.

We give examples of operators-based compatibility and replaceability analysis on Fig-
ure 2. P1 and P2 are only partially compatible, as

[
P1 ‖TC P2

]
P2
6≡ P2. By using the

difference operator to compute P2 ‖TD
[
P1 ‖TC P2

]
P2

, we get the set of conversations that
are supported by P2 but not by P1 which yield to a partial compatibility (P1 does not sup-
port receiving a c message after 10 units of time). P4 can be replaced by P3 as it supports
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T 1: a  T 2 : b− T 3 : c 

C−Invoke T210

P1

T 1: a − T 2 : b

P2

T 1: a  T 2 : b− T 3: c 

C−Invoke T2≥10∧T220

P2 ||TD [P1 ||TC P2]
P2

T 1: a  T 2 : b− T 3: d 

P3

T 4 : 
M−Invoke T2=5

T 1: a  T 2 : b−

P3 ||TD P4
C−Invoke T25

T 3: d 

T 1: a  T 2 : b−

P4
T 3 : c −

C−Invoke T220

Figure 2: Compatibility and replaceability analysis.

all of the conversations that P4 supports, denoted as P3 v P4 (every valid conversation of
P3 is also a valid conversation of P4). The converse is however not true as illustrated by
P3 ‖TD P4: P3 cannot handle d messages.

Class Characterization

Partial compatibility of P1 and P2 P1 ‖TC P2 is not empty

Full compatibility of P1 and P2

ˆ
P1 ‖TC P2

˜
P1
≡ P1

Replaceability of P1 by P2 P2 v P1

Equivalence of P1 and P2 w.r.t. replace-
ability

P1 ≡ P2

Replaceability of P2 by P1 w.r.t. a client
protocol PC

ˆ
PC ‖TC P2

˜
P2
v P1 or equivalently

PC ‖TC (P2 ‖TD P1) is empty

Replaceability of P2 by P1 w.r.t. a role PR (PR ‖TI P2) v P1

Table 2: Characterization of the compatibility and replaceability classes.

The formalization of the compatibility and replaceability classes that was introduced
in [8] as well as the characterization of these classes using the aforementioned operators
remain unchanged in the context of our extended protocol model (see Table 2). However,
due to the expressiveness of the timed protocol model used in this paper, the decision prob-
lems underlying protocol analysis (e.g., closure properties of the operators, decidability of
protocol subsumption) must be investigated in this new context. As described below, we
conducted our investigation using a formal framework based on timed automata theory.

4 From timed protocols to protocol timed automata

The previous sections have introduced the model of timed business protocols which is
suitable for describing and analyzing the external behavior of web services in presence of
timing constraints. In turn, the model of timed automata [2] has been extensively studied
as an extension of classical automata [35] with real-valued clocks and conditions on the
transitions. Given the extensive research that has been made on timed automata, we
chose to: (i) use timed protocols as a conceptual model, and (ii) use timed automata for
implementing the behavior of timed protocols, and (iii) adapt and/or extend theoretical
properties on timed protocols from existing work on timed automata. To achieve this task,
we give a mapping from timed protocols to timed automata. However, defining such a
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mapping is not a trivial task. Indeed, as we will see later, M-Invoke constraints are not
straightforward to implement using timed automata.

Note that we do not directly use timed automata for modeling service protocols at
the conceptual level as we believe that this will be a difficult and error prone task. The
difficulties in defining the semantic-preserving mapping that we will see hereafter as well
as the complexity of the obtained timed automata are strong arguments in favor of timed
protocols.

This section is structured as follows. We first introduce timed automata and then
provide a formal definition of the model used in this paper. Then we illustrate the chal-
lenges of converting a timed protocol into a timed automaton that correctly implements
its behavior. We describe the technique for performing such a mapping and finally, we
give a characterization of the obtained class of timed automata.

4.1 Quick overview on timed automata

s0 s2s1
a

x :=0

b

x5

Figure 3: A sample timed automaton A.

Timed automata were introduced in [2] as an extension of classical automata [35] to
model real-time systems. We take as an example the timed automaton A depicted on
Figure 3. At first sight, A is much like a “normal” automaton: it has locations (e.g., s0, s1
and s2) as well as switches with labels over the alphabet Σ = {a, b}. There is one initial
location s0 while s2 is an accepting location. Timing constraints are added in A by making
use of a clock x which is a continuous variable over the set of real-valued numbers R≥0. The
automaton A recognizes the set of timed words a·b such that b is recognized at most 5 units
of time after a. To do that, the clock x is reset to 0 when the automaton switches from
the location s0 to s1 on the symbol a. Again, a switch can reset an arbitrary number of
clocks. Initially, every clock is set to 0 and then, they grow synchronously as time evolves.
Note that, time elapses in the locations, while the switches are instantaneous. Clocks
can be used in constraints attached to the switches, called guards, and that can enable or
disable a switch depending on how guards are evaluated. Here, the clock x is used in the
guard of the b-labeled switch so that b cannot be recognized when (x ≥ 5) is true. More
precisely, a timed word over an alphabet Σ is a finite sequence (a0, t0) · (a1, t1) · · · (an, tn)
of symbols ai ∈ Σ that are paired with nonnegative real numbers ti ∈ R≥0 such that
t0 ≤ t1 ≤ · · · ≤ tn. For example w = (a, 0) · (b, 1) is a timed word where b has been
recognized 1 unit of time after a. A timed language over an alphabet Σ is a set of timed
word over Σ. Timed automata recognize timed languages. For example, the automaton
A of Figure 3 recognizes the time language {(a, t) · (b, t′) | t − t′ < 5}. In the sequel, we
denote by L(A) the timed language recognized by a given automaton A.

Over the years, several classes of timed automata with different level of expressiveness
have been studied leading to many results regarding the usual verification problems (e.g.,
reachability, language inclusion, etc) [4]. We present below the timed automata model
used in our context.
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4.2 Target timed automata model

We consider a timed automata model that enables silent transitions, noted hereafter ε and
called ε-labeled switches. As usual, a timed automaton is defined using a set of clocks X
while the set of clocks constraints over X, noted C(X), is built using boolean combinations
of atomic constraints of the form x # c with x ∈ X, # ∈ {=, 6=, <,≤, >,≥} and c ∈ Q.
We also allow diagonal constraints of the form (x1−x2 # k) with x1, x2 ∈ X and k ∈ Q∪⊥.
Diagonal constraints are known not to increase the expressiveness of the model but allow
more representation conciseness [24].

Definition 4.1. A timed automaton A is a tuple A = (Σ, L, L0, Lf , X,E) where:
• Σ is a finite alphabet, and ε denotes the empty word in Σ∗,
• L is a finite set of locations (or states), with L0 ∈ L being the initial location,
• Lf ⊆ L is the set of final locations (or accepting states),
• X is a finite set of clocks,
• E ⊆ L × C(X) × Σ ∪ {ε} × 2X × L is a finite set of switches (or transitions) e =

(l, g, a, r, l′) ∈ E from l to l′, where g is the guard, r is the set of clocks to be reset and
a is the label.

A clock valuation v for a set X of clocks is a mapping from X to R≥0∪{⊥} that assigns
to each clock x ∈ X a value v(x) in R≥0 ∪ {⊥}. A clocks valuation v satisfies an atomic
constraint (x # c) if and only if (v(x) # c) is true. This allows to check whether a guard g
can be satisfied by a clocks valuation v, denoted as v |= g. Given d ∈ R≥0, v′ = v+d is the
clocks valuation such that v′(x) = v(x) + d for each x ∈ X. Also, for r ⊆ X, v′ = [r ← 0]v
denotes a clock valuation such that v′(x) = 0 if x ∈ r and v′(x) = v(x) if x ∈ X \ {r}.

As usual, each clock of a timed automaton is a real valued variable that records the
amount of time that has elapsed since the last time the clock was reset. However, unlike
“standard” timed automata, and in the same spirit as [3], we assume that the values of
all clocks are initially equal to ⊥ (i.e., undefined). Then, the first time any clock x is
reset to 0, its valuation starts to grow synchronously w.r.t. other clocks as time evolves.
Detailed semantics of timed automata and discussion of “classic” verification problems
(e.g., location reachability, closure under complementation) can be found in [2].

4.3 Informal overview of the challenges

S0 S1 S2

S3

S4
T 1: a

T 2 :b

T 3: c

T 5 :
M−InvokeT 1=10∧T 22

S5
T 4 :

M−InvokeT 2=5

Figure 4: A sample timed protocol P used as a mapping running example.

We use the timed protocol from Figure 4 as a running example throughout this section.
It allows us to illustrate the challenges in creating a timed automaton that behaves like
a timed protocol. At first sight, the translation may look straightforward. However as
we will see, preserving the behavior of M-Invoke is not an easy task. The translation is
performed in two steps.

The first step consists in a straightforward procedure that converts a timed protocol
P into a timed automaton A as follows. States of P are translated into locations in A
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(e.g., the state s0 of P is mapped to a location l0). The initial state is mapped into an
initial location while final states are mapped to final locations. Each explicit (respectively,
implicit) transition in P is translated into a switch in A with the message name as its label
(respectively, a ε-labeled switches). For example, in P, T1 : R(s0, s1, a, true) is translated
into a switch e1 = (l0, true, a, r, l1) in A.

l0 l1 l2

l3

l4a
{xT 1}

b
{xT 2}

c
{xT 3}

 , g2= xT 1=10∧ xT 22
{xT 5}

l5
 , g1=xT 2=5

{xT 4}

Figure 5: A sample timed automaton that does not enforce M-Invoke semantics.

The transition identifiers from P are used to generate clocks in A. Indeed, each identi-
fier generates a unique clock which is solely reset on its corresponding switch. For example
the transition T2 generates a clock xT2 in A which is only reset on the switch that was
mapped from T2. This way, we can know when a switch was fired, just like in the timed
protocol P. The conversion of a C-Invoke constraint from P is also direct. For example,
a constraint C-Invoke(T1 < 3) is mapped to a guard (xT1 < 3). At this stage, the mapping
of P to A yields the timed automaton of Figure 5.

Let us now have a closer look on the mapping of implicit transitions. As mentioned
before, implicit transitions are automatically fired whenever their associated M-Invoke
constraints are evaluated to true. This semantics is not enforced in the target timed
automata by simply mapping implicit transitions into ε-labeled switches with a direct
translation of M-Invoke constraints into guards. Continuing with our example, the guard
g1 and g2 of the timed automata of Figure 5, may potentially become satisfied at the same
time, and hence the c-labeled transition can be fired while the guard g2 of the ε-labeled
switches is evaluated to true. To capture correctly the semantics of M-Invoke constraints
in the timed automata, ε-labeled must be preempted with respect to other transitions
that can be fired from the same location. To achieve this goal, additional constraints
must be added during the mapping phase in order to ensure that once a guard of a given
ε-labeled switch becomes true, all the other switches starting from the same location must
be deactivated.

To see how such constraints can be enforced, let us have a closer look at the various cases
that may occur when entering a location that offers one ε-labeled switch. We illustrate
that again on the location l2 of of Figure 5 but by considering only the switch c and one
ε-labeled switch, namely the one associated with the guard g1. The generalization to more
than one ε-labeled is straightforward, and will be detailed later. Three cases are possible.
The first one is that l2 is entered before g1 has been satisfied (i.e., while the constraint
(xT1 < 10) is true). In this case c can be fired as long as (xT1 < 10) is true. The second
case is that l2 is entered when the valuation of xT1 is such that (xT1 > 10): c can be fired
since g1 will never be satisfied in the future. Finally, third one is that l2 is entered while
(xT1 < 10) is satisfied and the automaton remains at location l2 while time elapses until
an instant t such that the clock valuation becomes such that (xT1 ≥ 10) is true. In this
case c can be fired only if, in the past (i.e., at an instant t′ < t), when (xT1 = 10) was true,
(xT2 > 2) was false. Note that, in this later case to decide if a transition c can be fired
safely at a given instant t it is necessary to conduct a reasoning about the ’past’ (i.e., the
values of the clocks at an instant t′ < t).
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To sum up, a direct translation of the M-Invoke constraints to guards is not enough to
properly capture the implicit transitions semantics in timed automata. Because of that,
more elaborated constraints need to be added into the guards. More specifically:

1. the mapping needs to rewrite some guards to enforce the expected behavior of M-Invoke
constraints, and

2. there is a need for knowing the exact clock valuations when a location is entered:
(a) to know the status of each equality clause in each ε-labeled switches (e.g., when

l2 is entered, do we have (xT2 < 5), (xT2 > 5) or (xT2 = 5)?)
(b) to know if the ε-labeled switches guards will be satisfiable or not (e.g., g2) when

their equality clause is satisfied.
In particular, knowing the valuation of each clock when a location was entered is

important for enabling/disabling some switches. For example when entering l2, if xT2 was
already greater than 5, then we know that the ε-labeled switch with guard g1 will have no
influence on the execution of the c-labeled switch nor on the other ε-labeled switch.

In timed automata, as clocks evolve synchronously, the difference between 2 clocks x1

and x2 is a constant until one of them is reset to zero. In the following, we use diagonal
constraints of the form (x1 − x2 # k), with k ∈ Q ∪ ⊥, to capture the clock valuations
when locations are entered. More precisely, for each location offering at least one ε-labeled
switch, we add a clock that is attached to this location. Such a clock is reset on every
incoming switch of the considered location. For example on Figure 5, we add a clock yl2

which is reset on the b-labeled switch. Then, the difference between any clock xe and such
a “location clock” yl is the exact value of xe when the location l was entered. Indeed, when
the location is entered, the valuation of yl is 0 as the clock has just been reset. Given
that the difference between the two clocks remains a constant while l remains the current
location, (xe − yl) is the clock valuation of xe when l was entered.

Using this technique to capture clock valuations at a time a location is entered, the
second step of the mapping can be done by rewriting the guards of every switch whose
source location offers ε-labeled switches. The rewriting must take care of allowing normal
(i.e., non ε-labeled switches) to recognize input symbols when there is no conflict with
ε-labeled switches and deactivate them otherwise. To this purpose, we will introduce new
clock constraints to capture when a given switch is allowed with respect to the guard of a
ε-labeled switch.

Going back to the example of Figure 5 with a new clock yl2 having been added, observe
that g1 must enable the other switches in the following two cases: (xT2 < 5), and (xT2 >
5)∧(xT2−yl2 > 5). While the first case is rather easy (i.e., l2 is entered before the equality
clause has been satisfied), the second case uses the valuation of xT2 when l2 was entered.
(xT2 − yl2 > 5) is only true if l2 was entered when (xT2 > 5) was true.

In a similar manner, g2 enables the other switches in the following cases: (xT1 < 10),
(xT1 > 10) ∧ (xT1 − yl2 > 10), (xT1 > 10) ∧ (xT1 − yl2 ≤ 10) ∧ (xT2 − xT1 ≤ −8), and
(xT1 = 10)∧ (xT2 − xT1 ≤ −8). The first two cases are similar to the case of g1. The third
case enables the other switches after the equality clause of g2 has been verified if the clause
(xT2 > 2) is false when (xT1 = 10) is true. Indeed, (xT2−xT1 ≤ −8) = (xT2−xT1 ≤ 2−10)
and when xT1 = 10, this reduces to (xT2 ≤ 2) which is the negation of (xT2 > 2). Hence
the clause (xT2−xT1 ≤ −8) is able to check when g2 cannot be satisfied. Finally the fourth
case is similar as it enables the other switches when the equality clause is satisfied if the
rest of g2 cannot be completely satisfied.

The correct mapping of P to A is given on Figure 6, where the “permits” constraints
are just the cases that we mentioned above. For example, permits(g1) = (xT2 < 5)

∨
xT2 >

5) ∧ (xT2 − yl2 > 5).
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l0 l1 l2

l3

l4a
{xT 1}

b ,{xT 2 , y l2}

c , permits g1∧permits  g2 , {xT 3}

 , g2∧ permits g1 , {xT 5}

l5
 , g1∧permits  g2 , {xT 4

}

Figure 6: A sample protocol timed automaton that does enforce M-Invoke semantics.

4.4 Enforcing M-Invoke constraints in protocol timed automata

To enforce M-Invoke semantics, the following behavior needs to be captured (examples
are taken from Figure 5).

1. When a ε-labeled switch guard becomes satisfied, all other switches must be imme-
diately disabled so as to make it the only switch that can be taken. An example is
when g1 becomes satisfied in l2: the two other switches must be disabled.

2. When a location offering a ε-labeled switch is entered after the equality clause of its
guard has been satisfied, the other switches must not be disabled. For example, if l2
is entered while xT2 > 5, the other switches must not be disabled.

3. When the guard of a ε-labeled switch cannot be satisfied when its equality clause
is satisfied, the other switches must not be disabled. Let us consider g2 while the
current location is l2. In case (xT1 = 10) is satisfied but (xT2 > 2) is not, the two
other switches must not be disabled.

The enforcement is done by rewriting the constraints using two new ones. First, we
define a constraint “inhib” over a ε-labeled transition guard of the form g = (x = k) ∧ g′.
The role of this constraint is to capture the cases where g′ is false, thus making the switch
that has g as its guard inactive. As we will see, this constraint plays a critical role in
enforcing the M-Invoke constraints in protocol timed automata. Then, we will provide
another constraint, called “permits”, also defined over a ε-labeled transition guard. It
defines when it allows other switches from the same source location to become actionable.
This constraint relies on the introduction of clocks that are attached to locations so as to
capture the clocks valuation when locations are entered. It uses “inhib” that we introduce
in the following definition.

Definition 4.2 (inhib constraint). Let a guard g := (x = k) ∧ g′ of a ε-labeled switch
defined over a ε-labeled switch l → l′ such as x is a clock over T = R≥0 ∪ {⊥}, k is a
constant in Q ∪ {⊥} and g′ is any clocks constraint: g′ = (x1 #1 k1) ∧ · · · ∧ (xj #j kj) ∧
(xj+1−x′j+1 #j+1 kj+1)∧ · · ·∧ (xm−x′m #m km) (for any i ∈ {1, · · · ,m}: xi, x

′
i ∈ X ∪Y ,

ki ∈ Q ∪ {⊥}, #i is any comparison operator) and Y is the set of clocks that we add to
record when a location is entered by resetting them on the switches that are incoming to a
given location.

We define the constraint “inhib” such that: inhib(g) = (x1− x not(#1) k1− k)∨ · · · ∨
(xj − x not(#j) kj − k) ∨ (xj+1 − x′j+1 not(#j+1) kj+1) ∨ · · · ∨ (xm − x′m not(#m) km)

In the case where g′ is not defined (i.e., g = (x = k)), then inhib(g) = false.

Going back to the timed automaton of Figure 5: inhib(g1) = false and inhib(g2) =
(xT2 − xT1 ≤ −8). Without loss of generality, we chose to reduce the ε-labeled switch
guard g to a unique conjunction in the previous definition to simplify the notations. The
case where g is a disjunction is easy: we consider it as multiple ε-labeled switches with
each switch having a single conjunctive guard. We keep this assumption in the remainder.
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With this “inhib” constraint at hand, we can now define a constraint called permits. When
given the guard of a ε-labeled switch, it defines when the other switches from the same
source location can be enabled without contradicting M-Invoke constraints.

Definition 4.3 (permits constraint). Let a guard g := (x = k) ∧ g′ of a ε-labeled switch
defined over a ε-labeled switch l → l′ such as x is a clock over T, k is a constant in
Q ∪ {⊥} and g′ is any clocks constraint. Let y ∈ Y the clock that is commonly reset by
all the switches whose target location is l. We define the following clauses: S1 = (x < k),
S2 = (x > k)∧(x−y > k), S3 = (x > k)∧(x−y ≤ k)∧inhib(g), and S4 = (x = k)∧inhib(g).

The constraint permits(g) is defined as permits(g) =
∨

i∈{1,2,3,4}
Si

The four permits clauses Si, with i ∈ [1, 4], play the following roles. S1 captures the
cases where the current clocks valuation v ensures that v(x) is still below k. S2 captures
the cases where v is above k and the location l has been entered after (x = k) was satisfied.
This is checked through the clause (x− y > k). S3 captures the cases where l was entered
before (x = k) was satisfied, but g′i could not be satisfied. In such cases, the switches
should not be disabled for the clocks valuations such that (x > k) is satisfied. Finally, S4

captures the cases where (x = k) is satisfied but g′i is not, hence the switches don’t have
to be disabled as well. Again considering the timed automaton of Figure 5:

permits(g1) = (xT2 < 5)︸ ︷︷ ︸
S1

∨
(xT2 > 5) ∧ (xT2 − yl2 > 5)︸ ︷︷ ︸

S2

, and

permits(g2) = (xT1 < 10)︸ ︷︷ ︸
S1

∨
(xT1 > 10) ∧ (xT1 − yl2 > 10)︸ ︷︷ ︸

S2∨
(xT1 > 10) ∧ (xT1 − yl2 ≤ 10) ∧ (xT2 − xT1 ≤ −8)︸ ︷︷ ︸

inhib(g2)︸ ︷︷ ︸
S3

∨
(xT1 = 10) ∧ (xT2 − xT1 ≤ −8)︸ ︷︷ ︸

inhib(g2)︸ ︷︷ ︸
S4

. We

can now define how the guards of the switches whose source locations offer ε-labeled
switches need to be rewritten so as to enforce M-Invoke .

Definition 4.4 ( M-Invoke enforcement). Let l be a location of a protocol timed automaton
A that offers n > 0 ε-labeled switches: {eε1 = (l, gε1 , ε, r1, l1), · · · , eεn = (l, gεn , ε, rn, ln)}

The rewriting of the guard of each switch whose source location is l (including the
ε-labeled ones) is performed as follows:

1. for each location l that offers a ε-labeled switch, augment the reset set of each switch
whose target location is l with the clock yl ∈ Y

2. compute {permits(gε1), · · · permits(gεn)}
3. rewrite the guard g of each switch (l, g, a, r, l′) as

(a) when a 6= ε, g =
∧

0≤i≤n
permits(gεi)

(b) when a = ε and the switch guard is gεj (j ∈ {1, · · · ,m}), g =
∧

0≤i 6=j≤n

permits(gεi)

As an example, we consider again the protocol timed automaton of Figure 5 that has
been fixed to enforce M-Invoke semantics on Figure 6.

4.5 Correctness of the mapping

The following theorem states the correctness of the mapping. It shows that a timed
protocol and its corresponding timed automaton (produced by the mapping described
above) have equivalent behaviors (they both recognize the same set of timed words).
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Theorem 4.5. Let A be a protocol timed automaton produced by a mapping of a timed
protocol P. Then, Traces(P) = L(A).

This theorem states that the set Traces(P) of timed traces that are compliant with a
protocol P is exactly the same as the language L(A) that is recognized by the corresponding
timed automaton A. Hence, the mapping proposed in the previous section preserves the
semantics of the timed protocols.

Proof of Theorem 4.5 is quite straightforward in the particular case where the original
timed protocol P does not contain any implicit transitions. Therefore, the main point to
prove Theorem 4.5 is to show that the guard rewritings presented in the previous section
capture the M-Invoke constraint semantics correctly. The following lemma shows that
the function inhib works as expected, i.e., it can inhibit guards when a ε-labeled switch
guard is totally satisfied, and allow them when it is not.

Lemma 4.6. Let a protocol timed automaton A and a location l ∈ A such that there exists
a switch e = (l, g = (x = k) ∧ g′, ε, r, l′), with g′ = (x1 #1 k1) ∧ · · · ∧ (xj #j kj) ∧ (xj+1 −
x′j+1 #j+1 kj+1) ∧ · · · ∧ (xm − x′m #m km) for m ∈ N and j ∈ {1, · · · ,m}. Then: (i)
(inhib(g) = true) =⇒ (g′ = false), and (ii) (inhib(g) = false) =⇒ (g′ = true).

Given a location that has several ε-labeled switches, the following lemma checks that
only one of them can ever become satisfied, thus disabling and forcing the transition
to another location. To do that, we express the following sanity-check type of boolean
implication.

Lemma 4.7. Let a protocol timed automaton A and a location l ∈ A such that it offers
n > 0 ε-labeled switches. For any i ∈ {1, · · · , n}, the guard g̃i of the i-th ε-labeled switch is
of the form gi

∧
1≤i 6=j≤n

permits(gj). Let i ∈ {1, · · · , n} and j ∈ {1, · · · , n} such that i 6= j.

Then: (gj = true) =⇒ (permits(gj) = false) ∧ (permits(gi) = true)

This implication expresses the fact that when a M-Invoke guard is satisfied, then its
derived permits constraint is false, and the permits clauses of every other M-Invoke guards
are still true. Indeed, if any of the later permits clauses was to be false, then it would
mean that its guard would have already been actionable in the past, yet not taken and
hence not enforced.

The following lemma states that the mapping of a timed protocol to a protocol timed
automaton is correct with respect to M-Invoke constraints.

Lemma 4.8. Let a protocol timed automaton A obtained from a timed protocol P. Every
ε-labeled switch e = (l, g = (x = k) ∧ g′, ε, r, l′) of A is taken as soon as its guard g is
satisfied.

4.6 Characterization of protocol timed automata

The previous sections described how a timed protocol can be mapped to a particular class
of timed automata called protocol timed automata. In this section, we leverage the formal
framework of timed automata to investigate the computational properties (i.e., decidability
and closure properties) of the protocol operators. As explained in previous sections, the
operators are very useful to perform compatibility and replaceability analysis.

We start by stating the following result regarding the intersection operator.

Theorem 4.9. The class of protocol timed automata is closed under intersection.
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This theorem is derived from existing results in the literature (e.g., [2]). Indeed, it is
known that timed automata with ε transitions are closed under intersection (and hence
also under compatible composition). It is easy to extend this result to protocol timed
automata (i.e., to show that the intersection or compatible composition of two protocol
timed automata is still a protocol timed automata). The next section describes a procedure
that implements such an intersection operator.

Let us now turn our attention to the complementation operator which plays a critical
role when it comes to characterizing the protocol difference and subsumption operators.
While the case of ‖TI and ‖TC was easy to deal with, the complementation operator poses
more challenges. Indeed, in the general case, non-deterministic timed automata extended
with ε-labeled switches are not closed under complementation [4]. In our case, since we
consider deterministic automata, this negative result is mainly due to the presence of ε-
labeled switches. [16] investigated the expressive power of ε-labeled switches and identified
cases where ε-labeled switches can be removed without a loss of expressiveness (e.g., case
of ε-labeled switches that do not reset clocks). Unfortunately, this result is of no use
in our case as the ε-labeled switches that we deal with do not belong to the identified
cases. In fact, as stated by the following theorem, ε-labeled switches strictly increase the
expressiveness of protocol timed automata and hence they cannot be removed without
losing in expressiveness.

Theorem 4.10. ε-labeled switches strictly increase the expressiveness of protocol timed
automata.

The proof of this theorem, based on the notion of precise actions introduced in [16], is
presented in the appendix. Despite these negative results, we are still able to prove that
the class of protocol timed automata is closed under complementation. The cornerstone
of the proof is to show that, although protocol timed automata include ε-labeled switches,
they still exhibit a deterministic behavior which ensures that at each step of an execution,
all clock values are solely determined by the input word.

Lemma 4.11. Protocol timed automata behave deterministically: given a protocol timed
automaton A and a timed word w ∈ L(A), w has exactly one run over A.

This result is a key for deriving the following theorem.

Theorem 4.12. The class of protocol timed automata is closed under complementation.

A procedure which extends the usual complementation construction to the case of
protocol timed automaton is described in the next section. The proof of this theorem,
provided in the appendix, is based on the observation that the proposed procedure pre-
serves the M-Invoke constraints in timed automata as well as determinism. Thanks to
this, a word that is rejected by a protocol timed automaton A is necessarily accepted by
its complement A.

The closure of protocol timed automata under intersection and complementation allows
to derive the following results regarding the timed protocol operators.

Corollary 4.13. Timed protocols are closed under ‖TI, ‖TC and ‖TD.

The result on the intersection and parallel composition operators is straightforward
since both ‖TI and ‖TC operators are based on the intersection using a different matching
of the messages depending on their polarities:
• in the case of ‖TI, two messages match when they have the same name and polarity

(e.g., a(+) and a(+))
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• in the case of ‖TC, two messages match when they have the same name but a different
polarity (e.g., a(+) and a(−)).

The result on the difference operator comes from the closure of protocol timed automata
under both intersection and complementation. Indeed, P1 ‖TD P2 is equivalent to P1 ‖TI
P2, hence timed protocol are also closed under difference.

Corollary 4.14. The timed protocol comparison operators v and ≡ are decidable.

This comes from the closure under complementation and intersection as well as from
the decidability of the reachability problem [2] (i.e., checking whether L(A1) ⊆ L(A2) is
equivalent to checking whether L(A1 ∩A2) = ∅ or not).

With the results presented above, we have proved that our full set of operators can
be implemented by exploiting already-known constructs on timed automata [2] and also
by establishing new results regarding the novel class of timed automata that we have
identified. This makes it possible to conduct automated analysis for all of the compatibility
and replaceability classes on timed protocols.

5 Protocol operators algorithms

In this section, we give the procedures that implement the intersection and complementa-
tion operators of protocol timed automata. The procedure for the other operators (com-
patible composition, subsumption and equivalence) can be straightforwardly derived from
these ones. The proposed procedures extend the existing constructions given in [2] to
maintain closure in protocol timed automata.

5.1 Intersection of protocol timed automata

The protocol timed automata intersection procedure extends the classical construction
on timed automata [2], which in turns already extends the construction on (untimed)
automata [35]. In the following steps, we removed the existing permits clauses from the
automata guards as new ones are being computed.

Given two protocol timed automata A1 = (Σ1, L1, L
0
1, L

f
1 , X1 ∪ Y1, E1) and A2 =

(Σ2, L2, L
0
2, L

f
2 , X2∪Y2, E2), the intersection A3 = A1∩A2 (with A3 = (Σ3, L3, L

0
3, L

f
3 , X3∪

Y3, E3)) is built through the following steps.
1. The locations are L3 = L1 × L2, the initial location is L0

3 = (L0
1, L

0
2) and the final

locations are Lf
3 =

{
(l1, l2) | l1 ∈ Lf

1 , l2 ∈ L
f
2

}
.

2. Two switches e1 = (l1, g1, a1, r1, l
′
1) ∈ A1 and e2 = (l2, g2, a2, r2, l

′
2) ∈ A2 are synchro-

nized if and only if a1 = a2 6= ε, producing a new switch e1e2 which is added to A3:
e1e2 = ((l1, l2), g1 ∧ g2, a1, {xe1e2}, (l′1, l′2)) (this introduces a new clock xe1e2 in A3).

3. ε-labeled switches are first added to A3 with their guard being freed of permits clauses.
We consider their guards to be disjunction-free (i.e., a ε-labeled switch whose guard
is disjunctive is equivalent to several ε-labeled switches with conjunctive guards). For
each pair of ε-labeled switches e1 = (l1, (x1 = k1)∧g1, ε, r1, l′1) ∈ A1 and e2 = (l2, (x2 =
k2) ∧ g2, ε, r2, l′2) ∈ A2, we add the following switches to E3:

e1eε = ((l1, l2), (x1 = k1) ∧ g1 ∧ ((x2 6= k2) ∨ ¬g2), ε, {xe1eε}, (l′1, l2))
eεe2 = ((l1, l2), (x2 = k2) ∧ g2 ∧ ((x1 6= k1) ∨ ¬g1), ε, {xeεe2}, (l1, l′2))
e1e2 = ((l1, l2), (x1 = k1) ∧ (x2 = k2) ∧ g1 ∧ g2, ε, {xe1e2}, (l′1, l′2))
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4. With the set of clocks in A3 being X ∪ Y as per definition, make sure that for each
location l offering at least one ε-labeled switch, a clock yl ∈ Y is reset on all of the
incoming switches to l.

5. For each location l ∈ A3, compute the permits clauses.
6. The guards in A3 need to be rewritten to refer to the clocks of the switches of A3 as they

still refer to those of A1 and A2 at this step. A map is maintained between each clock xe

of A1 or A2 and the set of clocks {xe,e1, xe,e2, xe3,e, · · · } that correspond to the switches
{(e, e1), (e, e2), · · · , } that were generated from e. Given a guard g of a switch in A3, a
clause (xe # k) of g is rewritten as a disjunction (xe,e1 # k)∨(xe,e2 # k)∨· · · . Diagonal
constraint clauses in g are also rewritten in a similar fashion using the mappings of
its two clocks.

Compared to the classic timed automata intersection procedure, the protocol timed
automata intersection has the following differences.

1. Clocks assignment remains “under control” to match the protocol timed automata
requirement of having at most two clocks reset per transition. The classical timed
automata intersection construction would simply combine the set of clocks from both
input timed automata and merge the clocks in the reset sets of each switch.

2. M-Invoke semantics are enforced in the intersection by computing new permits clauses
(the permits clauses of the input timed automata guards are discarded).

5.2 Complementation of protocol timed automata

We compute the complement of a protocol timed automaton using the following procedure
which is derived from the one for deterministic timed automata as given in [2], with the
difference lying in the presence of ε-transitions.

Given a protocol timed automaton A, we denote by A∗ its complete automaton which
is build as follows.

1. A location q is added to A∗ whose role is to act as a rejection location: given any
timed word w defined over L(A), the execution of w over A∗ goes to the location q
as soon as an input symbol yields to a word which is not in L(A). Hence, any timed
word w defined over the alphabet of A has a (unique) execution over A∗.

2. For each location l of A (this includes q) and for each word a of the alphabet, a

transition e =

(
l,

(
g
∧

1≤i≤n
permits(gεi)

)
, a, {xe}, q

)
is added where:

(a) g is defined as the negation of the disjunctions1 of the guards2 of the other a-
labeled transitions from l, and

(b) each gεi = (xi = ki)∧ g′εi appears in the guard of the i-th ε-labeled switch from l,
given that l offers n ≥ 0 of such switches.

As in [2], the complement A of A is deduced from A∗ by inverting the final and the normal
locations due to the fact that every timed word w ∈ L(A) has a unique run over A.

6 Implementation and usage

In the sections above, we have exposed the timed business protocols model and analysis
techniques. We now turn our attention to the validation of our approach. We first present

1e.g., given 2 a-labeled switches with guards g1 and g2, g = ¬(g1 ∨ g2)
2For each guard, we do not take into account the clauses that are obtained through the permits con-

straint.
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our prototype platform, and then we show a typical usage scenario of the tool to show
how it supports service development.

6.1 Prototype: the ServiceMosaic Protocols project

Protocols model library

Operators library

AntLR

UPPAAL Eclipse platform

Graphical Editing Framework

Eclipse plug-ins: editor, analysis, operators, protocol extractor, help

Protocol extraction library

Groovy

Development environment

ServiceMosaic component

Third-party

Legend

Figure 7: Components of the ServiceMosaic protocol development and analysis prototype.

The concepts discussed in this paper have been implemented in ServiceMosaic, a CASE
platform for supporting the service development lifecycle that includes facilities for mod-
eling, analyzing, discovering, and adapting web service models [14]. We are releasing most
tools at http://servicemosaic.isima.fr/downloads/protocols/ under the terms of the open-
source LGPLv3 license. The ServiceMosaic tools are developed for the JavaTM platform
version 5. Specifically, we created libraries that provide the functionalities of our contri-
butions (e.g., protocol operators) and we integrated them into the Eclipse platform (see
http://www.eclipse.org/) as plug-ins (e.g., a plug-in provides the graphical user interface
for applying the protocol operators).

Figure 8: Screenshot of the ServiceMosaic protocol development and analysis prototype.

The components that we have developed for this work are depicted on Figure 7. We
have created a library containing the object model of timed protocols. The AntLR parser
generator (see http://www.antlr.org/) has been used to parse C-Invoke and M-Invoke
constraints from strings representations. We have also created a timed protocol operators
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library. All of the operators (intersection, parallel composition, difference, subsumption
and equivalence) have been implemented in JavaTM . The subsumption and equivalence
operators rely on the external UPPAAL timed automata model checker [6], as they require
testing for language emptiness. As a requirement of the subsumption operator definition,
we have also implemented a complementation operator. The protocol extraction library
relies on the protocols model library to extract the web services choreographies from a
BPEL process. Figure 8 provides a screenshot of the prototype.

6.2 Protocol analysis at work

We now show how the prototype and protocol analysis approach can be used to facilitate
service development on the following scenario. The scope of applications of protocol anal-
ysis goes however beyond just this example as we will see in the next section. We assume
here that a developer is defining a BPEL process, related to the handling of a purchase
order, and that the process invokes several services during its execution. The tool will
assist the developer in checking if the selected services have a protocol which is fully or
partially compatible with the defined BPEL process, will identify which conversations can
and cannot be carried out, and will also tackle the case of non compatibility by supporting
the development of protocol adapters.

6.2.1 BPEL process outline

Consider the BPEL process depicted on Figure 9. It orchestrates four web services to
process a purchase order. For the sake of clarity, we have removed the assign BPEL in-
structions from the process diagram, normally required to prepare and reuse the messages
exchanged with the involved web services. The first part of the process handles the pay-
ment options. If the customer asks for a loan, then the process will make an offer using
the accounting web service. The customer can then accept or reject it. The asynchronous
pick BPEL construction defines an alarm that will be fired after 72 hours to discard the
process instance if the customer does not reply in time to the loan offer. The second part
checks for the ordered goods availability with the warehouse web service. If some goods
are not available, they will be ordered. In order to match quality of service requirements,
the purchase is canceled if the warehouse does not manage to purchase the missing goods
within 48 hours. The third an last part of the process handles the payment and prepares
the goods delivery. Finally, the customer is notified that the purchase has successfully
completed.

6.2.2 Business protocols extraction

Based on this BPEL process definition, we extract the timed protocols that the process
supports when interacting with its partner services. To do this, we use our multi-party
protocol BPEL extractor, and we then obtain the protocol governing the interaction of
the process with each of the partner services by filtering the multi-party protocol based on
each service partner link. The extractor, developed as part of the ServiceMosaic project,
takes a BPEL process as its input and then outputs a multi-party protocol, an extension of
a timed protocol where a message is also tagged with the partner link of the service which
is sending or receiving the message. As such, a multi-party business protocol captures
the message choreography of a BPEL process orchestrator. First, we identify protocol
extraction patterns for each type of basic and complex BPEL activity. The extraction starts
from the beginning of the process and goes through each activity to apply the protocol
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receive purchaseOrder

invoke prepareLoanOffer

invoke loanOffer

onMessage accept onMessage reject onAlarm 72h

stop stop

invoke checkAvailability

invoke purchase

onMessage purchaseResponse onAlarm 48h

reply cancelPO

invoke takeGoods

invoke shipGoods

invoke processPayment

reply poProcessed

pick

pick

flow

start

finish

stop

Loan No loan

No Yes

Payment method

Goods availability

Accounting

Customer

Warehouse

Delivery

Figure 9: A BPEL process that handles purchase orders.
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T1 : shipmentRequest − 

T 2 : shipmentResponse 

P1 (delivery)

T 1: paymentRequest −

T 2 :
paymentResponse 

T 3: loanRequest −

T 4 : loanOffer 
T 5:
paymentRequest −

P2 (accounting)

T 1 :
purchaseOrder 

T 2 : poProcessed −

T 3: poCancel −

T 4:
loanOffer −

T 5: reject 

T 6: accept 

T 7 : expiration
M−Invoke T 4=72h

T 8: poProcessed −

P4 (customer)

T 1: availabilityRequest −

T 2 : availabilityResponse 

T 3: purchaseRequest −

T 4 : purchaseResponse 

C−Invoke T 348h

T 5: takeGoods −

P3 (warehouse)

M−Invoke T3=48h 
T 6 : too long

C−Invoke T 472h 

C−Invoke T 472h 

T 7: takeGoods −

Figure 10: Timed protocols extracted from the BPEL process of Figure 9.

extraction patterns as they are recognized. When a complex activity is encountered (e.g.,
if, switch, while, pick, ...), it is recursively processed on each of its complex activities until
basic activities are reached. The obtained protocol fragments are assembled by inverse
recursion. For instance, if a if activity comprises one invoke on each alternative branch,
then a protocol fragment is derived from each invoke, then they are combined as different
branches from the current state in the extraction process.

The protocol which is followed by the process while interacting with a given service
(identified by its BPEL partner link) can be obtained as follows. The idea is to perform
a special form of filtering on the multi-party protocol. In a similar fashion as projection
for timed automata [4], we replace the messages with ε on the transitions that are not
associated with the partner link of the service that we are interested in. Also, each temporal
constraint that refers to a transition which is not from the target partner link is removed.
Indeed, they do not make sense in the protocol that we want to obtain since they refer
to events that are not “seen” by the orchestrated service. Finally, the service protocol is
obtained by removing the ε transitions using standard techniques on automata [35]. This
is possible only because if we mapped to timed automata, there would be no guard nor
clock resets on these transitions [31]. While still experimental, we have found out that the
protocol extraction operator works well for a large majority of BPEL processes

In this scenario, the resulting protocols are shown in Figure 10. Figure 11 shows
instead the protocol of the warehouse service we are planning to use as one of the services
invoked by our process. Note that this transformation is not reversible. When generating a
protocol, we only care about possible ordering of messages and not about the many details
prescribed by a BPEL process (such as why – based on which condition – a certain path
is chosen). Nevertheless, we had developed developed techniques for generating service
implementation templates in BPEL from protocols definitions [5].
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T 1: availabilityRequest −

T 2 :
availabilityResponse 

T 3: purchaseRequest −

T 4 : purchaseResponse 

T 5: takeGoods −

T 6 :
ensureAvailabilityRequest −

T 7:
ensureAvailabilityResponse  T 8: purchaseRequest −

T 9: takeGoods −

P5 (warehouse)

T 11: takeGoods −

T 10: takeGoods −

Figure 11: The complete warehouse service protocol.

6.2.3 Protocol analysis

T 2 :availabilityResponse 

T 3 :
purchaseRequest −

T 4 : purchaseResponse 

C−InvokeT 3≥48h 

P5 ||TD P3-1 (+ pruning)

T 5: takeGoods −

T 1 : availabilityRequest −

T 1: availabilityRequest − T 2 :availabilityResponse 

T 3:
purchaseRequest −

T 6: takeGoods −

[P5 ||TC P3]
P3

T 4 : purchaseResponse 

C−Invoke T 348h 

T 5: takeGoods −

Figure 12: Analysis of the common and differing conversations supported by P3 and P5.

We next apply the protocol analysis operators to assess compatibility between the
protocols supported by our process and the protocols of the services we plan to use. For
this, we assume that either the protocol or BPEL definition (from which we extract the
protocol) of these services is available. Figure 12 shows the results of this analysis for the
warehouse service. In particular, the compatible composition operator P5 ‖TI P3 gives the
set of the conversations that can occur between protocols P3 and P5. Ideally, we would
want this set to be equal to the conversations supported by P3, which means that P5 is
fully compatible with P3.

However, in our example, we do not have such luck. In fact we see that the conver-
sations supported by the compatible composition are a subset of those supported by P3.
The figure further shows the conversations that are supported by the process but not by
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our partner service P5 (which is empty in case of full compatibility), as well as the con-
versations that the partner supports but that the process does not support. The first of
these two combined protocols is obtained by computing the inverse P−1

3 of P3 and then the
difference P−1

3 ‖TD P5. The latter is instead computed as P5 ‖TD P−1
3 . As we will examine

later, all these combined protocols will become helpful in examining if and which changes
need to be made to the process.

In particular, while the first combined protocol of Figure 12 (compatible composition)
tells us what we can do, the second one denotes what our process is prevented from doing
when using this partner (hence we call these prevented interactions), while the third one
denotes conversations that the partner would support, but we are not leveraging due to
how we implemented the process. We call these neglected interactions.

It is interesting to note that no compatibility problem would have been spotted in the
case of business protocols without timing constraints [12]. Indeed, the untimed version of
P5 would have supported all of the conversations of the untimed version of P3.

6.2.4 Managing partial replaceability scenarios

By looking at the three combined protocols, the developer can assess if the selected ser-
vice is a good fit or not, and how to handle situations of partial replaceability or of no
replaceability. In general, this depends on the specific business purpose of the process.
For example, the service I am planning to invoke may not support a cancelPO operation,
but I may be willing to take the risk and use it anyways even if cancellations are not
allowed, for example because it offers cheaper rates. Or, conversely, the selected service
supports several forms of payments (accessed via different protocols) but my process can
only support one of them, and we may be fine with it as for example our company only
issues payments via credit card and not via bank transfers.

Alternatively, we can modify the process definition to adapt it to the service we are
using, either to:

1. ensure that our process does not generate conversations our partner cannot under-
stand, or

2. leverage conversations supported by our selected services (e.g., extend our process to
support bank transfers).

As another example, in our process, we can remove the onAlarm 48h handler of the sec-
ond pick complex activity, so that the process will wait for the purchaseResponse message
to arrive, thereby removing the problematic temporal constraints in the extracted expected
warehouse protocol. However, the process may find itself being put on hold indefinitely
if a problem occurs on the warehouse service and it does not send a purchaseResponse
message back.

Another solution is to generate a protocol adapter [7] to reconcile the differences. It
can be done with the ServiceMosaic tools using an aspect-oriented framework [37] where
adapters are plugged through advices written in BPEL. The adapter is developed as fol-
lows. The pointcut is triggered when a purchaseRequest message is received. The advice is
a BPEL process where an alarm starts counting from the reception of the purchaseRequest
message. If the service does not send a purchaseResponse withing the next 48 hours, then
the adapter drops it when the warehouse service sends it afterwards. The BPEL engine
will have already woken up the process instance by then, and taken action by replying to
the client partner link with a cancelPO message.

Finally, it should be noted that for most BPEL engines, a message is simply dropped
when it cannot be dispatched to any process instance for which it is waiting. An exception
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is then usually raised and logged inside the BPEL engine. In this example the adapter
would be useful for diminishing the number of internally-thrown exceptions (raising ex-
ceptions has a significant performance cost). The choice of developing this adapter should
be balanced in light of its development cost compared to the (limited) benefits, as BPEL
engines can provide a form of “implicit” adapter in very specific mismatches cases such as
this one.

7 Discussion

We now provide a discussion that includes related work as well as two limitations of our
approach.

7.1 Related work

7.1.1 Timed automata

Many classes and extensions of timed automata have been studied. Deterministic timed
automata [2] are known to be closed under complementation. So are event-clock automata
[3], a subclass of deterministic timed automata which have the interesting property that
every such indeterministic automaton has an equivalent deterministic automaton. Allow-
ing diagonal constraints (x − y # c) [16] make the model more concise but does not add
to the expressiveness. Additive constraints (x + y # c) renders the emptiness checking
problem decidable for 1 or 2 clocks, open for 3 clocks and undecidable starting from 4
clocks [15]. Non-standard (x := 0) clocks resets make this problem decidable for x := c
and x := x + 1 (if diagonal constraints are not allowed) but undecidable for x := x − 1
[22]. The class of Robust Timed Automata allows to recognize events with fuzziness w.r.t.
dates [4]. Previous work on timed automata augmented with ε-transition had suggested
that the class of protocol timed automata would not have been closed under complemen-
tation [23, 16, 31]. While the results presented in [31] still hold in the general case where
ε-transitions can reset an arbitrary number of clocks and have complex guards on transi-
tions, we have identified a very specific class for which the traditionally “hard” problems
become decidable (closure under complementation and language inclusion). The class of
event-recording timed automata [3] is a subset of deterministic timed automata. They also
form a subset of protocol timed automata.

7.1.2 Standardization efforts

Standardization organizations (e.g., W3C, OASIS) have tried to provide specifications
for describing the external behavior of web services in terms of both choreographies and
orchestrations. They build on top of the existing widely used specifications for the static
interfaces of web services (e.g., WSDL, XML-Schema). BPEL, WSCL and WSCI are
examples of specifications that feature support for describing services conversations [44],
although the last two do not seem to have gained much adoption in practice. Our work is
complementary to those specifications rather than competing. Choreography specifications
(in WSCI or a WSCL extension) can be derived back and forth from timed protocols.
BPEL orchestrations can be processed by our protocol extraction tool for obtaining the
expected business protocol of each service that it orchestrates.
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7.1.3 Models for web services

Research on web services has lead to various models being proposed to describe their
behavior and/or implementation for the purpose of analysis and execution. A discussion
on modeling web services interactions has been proposed in [25] and is further discussed in
[26]. An approach for web services interfaces was defined in [21]. A model with similar goals
as timed protocols had been introduced in [18], but the timing constraints defined in the
model have not been taken into account. A language for web services choreographies called
Chor has been proposed in [46] as a simplification of WS-CDL. All of these approaches
share many similarities with this work and the base model for business protocols of [12].
Surprisingly, little work has been done on timing abstractions.

7.1.4 Verification techniques

Many works have tried to apply in various fields verification techniques such as checking for
liveness, the absence of deadlocks or the conformance against specifications. A substantial
amount of work has been done in the field of workflow systems [1, 29, 20]. In the case of
web services, timed automata have been used in [36, 30, 18]. In the case of [18] the WSTL
model had been designed with timing constraints as “first-class citizen”, but they have
never been leveraged. BPEL-based web services interactions have been analyzed in [33]
by the mean of guarded automata with unbounded message queues where the automata
synchronization problem is studied in synchronous and asynchronous communications.
The same types of verifications can be easily done on protocol timed automata using
TCTL, an extension of temporal logics for timed automata, and a model checker such as
UPPAAL [6]. Such approaches are complementary to this work. Interestingly, we reused
and extended results from the field of formal verification (e.g., timed automata), but not
for the purpose of doing “classical” model-checking.

7.1.5 Compatibility and replaceability

Software components have some fundamental similarities with web services: they promote
good practices such as loose coupling and reuse. Also, they can be remotely accessed over a
network. Similar approaches for protocols compatibility and replaceability exist in the area
of component-based systems [51, 28]. The importance of being able to check for services
compatibility or replaceability has lead to several research works [38, 32, 21]. Surprisingly,
these approaches do not cater for timing constraints. They also perform “black or white”
analysis. By contrast, our approach is able to provide a more fine-grained type of analysis
by identifying the “partial cases” like the partial compatibility or the replaceability with
respect to a client protocol. We believe that this flexibility will significantly prove to be
useful in practice, as full compatibility or replaceability of business protocols can hardly
be reached on the Internet which is an open service deployment environment. The notion
of process inheritance has been studied in the domain of workflows [50, 27]. It is similar to
protocols replaceability. Different types of inheritance relations are proposed in [50]. They
provide some flexibility much like we did with the different classes of protocol replaceability.
However, these approaches do not consider temporal abstractions.

7.1.6 Model management

The work that has been done in the model management area focuses on manipulating mod-
els (e.g., database schemas, XML schemas) and matches between them (e.g., equivalence
between 2 database schema) on an equal foot [19]. The matches relationships between
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2 models can be used for matching, merging or composition purposes. The models can
also be manipulated through various operators like the intersection, the union or the dif-
ference. A set of combined static and behavioral matching and merging techniques for
statecharts-based specifications have been proposed in [40]. This work has been done in
a similar fashion as the approaches for schema matching (including databases and XML)
mentioned in [47, 19]. The work presented in this paper is largely inspired what has been
done in this research field. Indeed, timed protocols are models and we have defined proto-
col manipulation operators (composition, difference and intersection) as well as comparison
operators (subsumption and equivalence) that define matchings between protocols. The
match operator of [40] could be used to identify compatibility and replaceability between
two (untimed) business protocols of [12]. A clear benefit of this approach would be to
detect matches when protocols have different messages names but similar semantics (e.g.,
login and connect), as in our case the operators match the messages only on name equal-
ity. The matches and mismatches could then be exploited to generate protocol adapters
[7, 42]. However, it requires human intervention as the heuristic results may contain miss-
ing and invalid matches. Also, it does not cater for timing constraints as they require
proper analysis techniques as done on timed automata.

7.2 Limitations

7.2.1 Constraints with absolute dates

Timed protocol constraints are always expressed relatively to a transition of a given
protocol being fired (e.g., C-Invoke(T1 < 3h)). Absolute dates cannot be used in
constraints (e.g., C-Invoke(T1 < ’2007-04-19 14:49:00’) or C-Invoke(current time <
’2007-04-19 14:49:00’)). Such types of constraints can be found in some specifications
such as BPEL [43] where both types of relative and absolute time expressions can be used.
Let us briefly investigate the impact of introducing absolute dates into the model by look-
ing at the involved mechanisms at the timed automata level. Allowing a constraint to
compare a clock x to a constant date (e.g., x < ’2007-04-19 14:49:00’) which represents
an absolute date requires the following assumptions. (i) x is set to a constant now which
represents the current date when the automaton execution starts, and (ii) x is always
compared to absolute dates, and (iii) x is never reset in the considered automaton.

We claim that making such an extension renders the timed language emptiness checking
problem undecidable. The proof can be done by observing that now is actually a variable.
In timed automata, the clocks are set to a constant value (usually 0) when the execution
starts. Here, we would have some special clocks that would be initially set to a value which
depends on the current time. Hence, the result of checking for the emptiness of such an
extended timed automaton would only hold considering the time at which the checking
has been performed (i.e., the results holds at time t but may not hold anymore at time
t+ δ with any δ ∈ R≥0).

This limitation of timed protocols in terms of expressiveness is not a penalty as such
constructs are of limited use in practice. In the case of BPEL, timers are mainly used for
generating timeout exceptions in asynchronous operations (e.g., the pick complex activity).
They can be also used for a wait activity (e.g., put the process in sleep to enforce legal
regulations). In our experience, we have never found a need for expressing absolute dates in
BPEL processes. Also, JBoss JBPM (see http://www.jboss.com/products/jbpm), a widely
used business process management system, offers a workflow language called jPDL where
time-related constructs are always expressed in a relative manner (i.e., jPDL does not
allow specifying absolute dates for timers).
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7.2.2 Message transport communications

Finally, our model is based on the assumption that there are no message transmission
delays and losses. This is of course not the case in reality as web services messages are
mostly transported over unreliable networks that can have substantial load variations,
leading to greatly varying network latencies and even errors. As mentioned in related
work, the class of Robust Timed Automata [4] is a possible exploration path.

8 Conclusion

This paper has revisited the concepts presented in earlier work by providing an extended
model for web services business protocols that supports timing abstractions. The level of
abstraction that drove the design of this model was developed on the grounds of a study of
real-world scenarios related to web services. The model can be leveraged for fine-grained
protocol compatibility and replaceability analysis based on a set of protocol manipulation
and comparison operators. We showed that the decision problems surrounding their im-
plementation are decidable, thanks to the mapping and the identification of a novel class
of timed automata which is closed under complementation and for which the language
inclusion problem is decidable despite the presence of ε-transitions with clocks resets. We
also presented our initial prototype as part of the ServiceMosaic project and gave a case
study.

The results presented in this paper will pave the road for an agile web services compo-
sition development and management framework. Briefly, this environment will be centered
around protocol repositories. They will be queried for compatibility at development time,
allowing the rapid-prototyping of service compositions. In turn, they will be queried for
replaceability at runtime to handle needs to substitute a service that becomes unavail-
able or whose protocol has changed. In both development and runtime environments, the
framework will provide means to help at generating adapters.

We believe that modeling and analysis techniques with formal foundations such as the
ones that we have presented will help at transforming the development and the mainte-
nance of web services based applications from an “art”, requiring a substantial amount of
manual interventions, to a model-driven process that is automated to a large extent.
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A Proof of Lemma 4.10

T 0: b
{xT 0}

S0

S2S1

T 1 : a
 xT 1=1∨xT 3=1
{xT 1}

T 2 : b
0xT 11∨0xT 31∨0xT 01
{xT 2 , yS 2}

T 3 :
 xT 1=1∨xT 3=1∨xT 0=1
{xT 3}

Figure 13: A protocol timed automaton A that cannot be expressed equivalently without
ε-transitions.

Proof. We need to show that ε-transitions in protocol timed automata cannot always be
removed, i.e., there are protocol timed automata for which there doesn’t exist equivalent
automata without ε-transitions. To do that, we exhibit the protocol timed automaton A
depicted on Figure 13 and use the notions of precise time and precise actions that were
introduced in the Theorem 24 of [16] as a tool to identify timed languages that can only
be recognized by timed automata featuring ε-transitions. The proof is virtually the same
as the one of Corollary 29 in [16].
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It is easy to check that A is a protocol timed automaton. A presents 2 ε-transitions
lying on directed cycles, hence we don’t know if they can be removed using the techniques
presented in Section 8 in [16].

Let us now suppose that L(A) can be recognized by a timed automaton A′ without
any ε-transition. Note that A′ is free of diagonal constraints (e.g., constraints of the form
x − y # c). A′ can be rendered disjunction-free without any loss of generality (see [16]
for techniques and discussion). In order to leverage the Theorem 24 of [16], we define
Cmax = 1 (no constant in the guards of A is larger than 1). Let also δ > 0. A can
recognize timed words of the form

(b, δ1) · (b, δ2) · · · (b, δd−1) · (a, d) · (a, d+ 1) · · ·

where d ∈ N, d ≥ Cmax and δi ∈ (i− 1, i) \ δN for all 0 < i < d. Let P a path of A′ that
accepts such a timed word. Given that the a-labeled events occur at integer times, their
occurrences should be precise in P . Also, d ≥ Cmax, hence from Theorem 24 of [16], there
exist some occurrence of b that should be precise in P which is not possible as δi 6∈ δN for
any 0 < i < d. Consequently, L(A) cannot be recognized by a timed automaton without
ε-transitions.

B Proof of Lemma 4.7

Proof. Let us check the implication.

(gj = false)
∨

(permits(gj) = false) ∧ (permits(gi) = true) = true

is equivalent to

(permits(gj) = true)
∨

(permits(gj) = false) ∧ (permits(gi) = true) = true

which reduces to

(permits(gj) = true)︸ ︷︷ ︸
false as gj=true

∨
(permits(gi) = true) = true︸ ︷︷ ︸

permits(gi)=true

and the implication is verified. Indeed, permits(gi) = true, else this would mean that the
switch whose guard is g̃i had already been activated.

C Proof of Theorem 4.8

Proof. Let us compute the cases where inhib(g) evaluates to false. We assume that
y ∈ Y is the clock that is reset on every switch whose target location is l. We compute
and expand the negation:

¬permits(g) = (x > k)
∧ ((x ≤ k) ∨ (x− y ≤ k))
∧ ((x ≤ k) ∨ (x− y > k) ∨ ¬ inhib(g))
∧ ((x 6= k) ∨ ¬ inhib(g))
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we make a first development:

= ((x = k) ∨ (x ≥ k) ∧ (x− y ≤ k))
∧ ((x < k) ∨ (x 6= k) ∧ (x− y > k)
∨ (x 6= k) ∧ ¬ inhib(g)
∨ (x ≤ k) ∧ ¬ inhib(g)
∨ (x− y > k) ∧ ¬ inhib(g)
∨ ¬ inhib(g))

and a second one:

= (x = k) ∧ ¬ inhib(g)
∨ (x = k) ∧ (x− y > k) ∧ ¬ inhib(g) false

∨ (x > k) ∧ (x− y ≤ k) ∧ ¬ inhib(g)
∨ (x = k) ∧ (x− y ≤ k) ∧ ¬ inhib(g)
∨ (x ≥ k) ∧ (x− y ≤ k) ∧ ¬ inhib(g)

by reducing the last 3 disjunctions:

¬permits(g) = (x = k) ∧ ¬ inhib(g)
∨ (x ≥ k) ∧ (x− y ≤ k) ∧ ¬ inhib(g)
= (x ≥ k) ∧ (x− y ≤ k) ∧ ¬ inhib(g) (1)

(1): ((x = k) = true) =⇒ ((x− y ≤ k) = true).
This means that permits(g) disables switches when:

1. (x = k) is satisfied as well as g′, resulting in the ε-labeled switch whose guard is g to
be enabled, or

2. l was entered before (x = k) was satisfied, g′ was satisfied when (x = k) was, and the
current clocks valuation satisfies (x ≥ k), forcing the ε-labeled switch to be taken.

D Proof of Lemma 4.11

Proof. Let us consider a location l that offers several switches, including n > 0 ε-labeled
ones. By considering two switches from l, three cases are possible.

1. The switches have both labels that are not ε. By definition their guards are disjoint.
2. One switch ei (i ∈ {1, · · · , n}) has ε as its label with a guard

(gi

∧
1≤j 6=i≤n

permits(gj))

and the other switch has a label that is not ε and a guard

(g
∧

1≤j≤n

permits(gj))

The product of the guards contains a sub-clause (gi ∧ permits(gi)) which is false: the
guards are disjoint.
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3. The two switches have ε as their label. The product of their guards will make a
sub-clause of the following form to appear:

(xi = ki) ∧ g′i ∧ permits(gj) ∧ (xj = kj) ∧ g′j ∧ permits(gi)

(i and j belong to {1, · · · , n} with i 6= j). As permits(gj) ∧ g′j is false, the guards are
disjoint.

E Proof of Theorem 4.12

Proof. The construction of A∗ adds one location q to A as well as one new switch per
symbol of the alphabet and per location of A plus q. We first show that the construction
preserves determinism, and that given an input symbol, it can be recognized for any clocks
valuation when the current location doesn’t have any ε-labeled switch.

As every new switch guard is defined as the negation of the disjunctions of the guards
of the switches from the same label, the intersection of the guards of every switch on the
same label for a location l is necessarily false, meaning that those guards are disjoint. In
the case where a location l does not offer any ε-labeled switch, it is also easy to check that
the disjunction of the guards of the switches having the same label from l is true as in [2].

Let us now consider a location l having n > 0 ε-labeled switches gεi (1 ≤ i ≤ n).
We also consider any symbol a of the alphabet and the m > 0 guards of the a-labeled
switches from l: {g1, · · · , gm} (again, given 1 ≤ j ≤ m, gj is considered without its permits
constraint clauses). Let us compute the disjunction of the a-labeled switches guards:g1 ∧

1≤i≤n

permits(gεi)

∨ · · ·∨
gm

∧
1≤i≤n

permits(gεm)


By construction there exists j ∈ {1, · · · ,m} such that gj = ¬

( ∨
1≤k 6=j≤m

gk

)
, hence the

previous disjunction reduces to: ∧
1≤i≤n

permits(gεi)

which means that a is recognized from l under M-Invoke semantics. However, A must
also recognize a when this expression evaluates to false, which is clearly not possible from
l.

Let v be a clocks valuation such that a is to be recognized and

v |=

 ∧
1≤i≤n

permits(gεi) = false


We can make the following remarks:

1. the current location is not l anymore as a ε-labeled switch has been taken for the first
clock valuation that stopped satisfying the previous expression, and

2. the current location change through the ε-labeled switch was instantaneous.
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Let us call the current location l′. By construction, it offers a-labeled switches. From the
remarks above, the guard of every switch satisfies

¬

 ∧
1≤i≤n

permits(gεi)


for the clocks valuation v.

Consequently, a can always be recognized from l and the locations available through
its ε-labeled switches: ∧

1≤i≤n

permits(gεi)

∨¬
 ∧

1≤i≤n

permits(gεi)

 = true
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